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PREFACE

A special session on Fixed points and Nonexpansive mappings was held in
conjunction with the Annual Winter Meeting of the American Mathematical Society
in Cincinnati in January 1982. This volume represents the proceedings of that
meeting. In several instances the papers here go beyond "extended versions" of
the actual talks given. It was felt that the interest would be greater in
scope and in time if the papers took on as much of the flavor of a survey as
possible.

There are other ways in which the proceedings here differ from the
sessions there. Two of the original talks have been published elsewhere and
therefore are not reproduced here. Now that it is known that a convex, weakly
compact minimal set need not reduce to a fixed point it is natural to study
what properties such a minimal set must have. Michael Edelstein addressed him-
self to this investigation in his talk which was published as Basic properties
of nonexpansive mappings, C. R. Math Rep. Acad. Sci. Canada, vol. IV (1982)

No. 2.

Barry Turett's talk demonstrated that the result due to Baillon that
uniformly smooth implies the fixed point property holds, in fact, for the
reason that uniformly smooth implies normal structure. Turett's result ap-
peared as A dual view of a theorem of Baillon, in Nonlinear Analysis and
Applications, S. P. Singh and O. H. Barry, Eds., Marcel Dekker, 1982.

N. Swaminathan did not speak in Cincinnati but we are fortunate to have

his survey on Normal Structure included. Finally my own paper on recurrence

vii



viii PREFACE
was held in reserve at Cincinnati in the event that some scheduled participant

would be unable to present his paper. This mishap did not occur so the backup

paper is offered here for the first time.

My thanks to the contributors and to Ellen Swanson and her staff at

the Society in Providence.

Robert Sine

Saunderstown, R.I.
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Contemporary Mathematics
Volume 18, 1983

ASYNPTOTIC BEHAVIOR OF NONEXPANSIVE MAPPINGS
Ronaid E. Bruck1

ABSTRACT. We survey what is known about the asymptotic behavior of
iterates {T™x} of a nonlinear nonexpansive mapping defined in a
Banach space, and more generally the asymptotic behavior of certain
periodic evolution systems, emphasizing the nonlinear mean ergodic
theorem. We also consider multiple-operator iterations, the struc-—
ture of w—limit sets, the convergence (as t *+ 1) of the often—used
approximation scheme x, = tTx_ + (1-t)x, and the behavior of
unbounded orbits. We comnciude by listing some unsolved problems and
conjectures ranging from reasonable to wild-eyed.

1. INTRODUCTION. The Picard contraction—-mapping principle has proved to be
one of the most durable and fruitful methods in analysis. Lying just at the
boundary of the Picard contractions is the set of nonexpansive mappings:
those with Lipschitz constant 1. This paper is an exposition of the asymptotic
behavior of nonexpansive mappings defined on convex subsets of Banach spaces

The importance of this class lies neither in its trivial generalization
of a Lipschitz condition, nor in a comparable durability or fruitfulness, but
in two key observations: first, nonexpansive mappings are intimately tied to
the monotonicity methods developed since the early 1960's, and constitute one
of the first classes of mappings for which fixed-point results were obtained
by using the fine geometric structure of the underlying Banach space instead
of compactness properties. Second, they appear in applications as the transi-
tion operators for initial-value problems of differential inclusions of the
form du/dt + A(t)u(t) 3 0, where the operators {A(t)) are in general
multi-valued and in some sense 'positive’ ('accretive’, or when the sign is
changed, 'dissipative’), and only minimally ‘continuous’.

The asymptotic behavior of nonexpansive mappings is much richer than that
of Picard contractions —— which merely converge! If T is compact, the theory
of dynamical systems brings out a rich topological and algebraic structure on
the w-limit set which is quite sufficient for many applications. In this
survey we emphasize results and methods using only geometry and weak

compactness, since these arguments pertain so uniquely to the theory and

1980 Mathematics Subject Classification. Primary 47H, 35B; Secondary 46B
1Partially supported by NSF Grant MCS 81-02086.

© 1983 American Mathematical Society
02714132/83 $1.00 + $.25 per page



2 RONALD E. BRUCK

maintain such a tenuous existence

This paper is intended for a general mathematical audience. We survey
those results selected as being especially elegant or surprising: asymptotic
regularity, behavior of unbounded orbits, convergence methods, nonlinear mean
ergodic theorems, the approximation scheme of the Abstract, and discrete
approximation schemes. In the final section of the paper, titled 'Blue Sky’,
we present several barely tenable conjectures and indicate why they may be
true.

The author regrets that innumerable fine papers have been omitted from
the bibliography, even whole topics omitted from the exposition, through
exigencies of time and space. He solicits corrections, comments, and
bibliographical references from readers; he would especially welcome preprints
and reprints bearing on the conjectures.

NOTATION, TERMINOLOGY AND STANDING CONVENTIONS. E always denotes a
Banach space having norm I, and C is a non—empty closed convex subset of
E, not necessarily bounded. Unless explicitly stated otherwise, T always
denotes a nonexpansive self-mapping of C, that is, a map T : C —> C such that
||Tx—Ty|| < l|x—y" for all x, y in C. We denote the set of fixed-points of T

by F(T) (this may be empty). The set of stromg (resp. weak) subsequential

limits of the sequence {T"x} is denoted by ms(x) (resp. mw(x)). The convex
hull of a set S is denoted by co S, its closure by ¢l S, and its closed convex
hull by clco S. The dual space of E is denoted by E*, and the duality pairing
by (°,°).

Since this is intended for a general audience, we include the definitions
of some 'buzzwords'. A multivalued operator on E is a subset A of E xE,
i.e., a relation on E. We use without comment the standard set-theoretic

notation Agl

for the inverse of A, Ax for the set of y with [x,y] ¢ A, D(A)
for the effective domain of A, and R(A) for the range of A. The definitions
of the sum A+B and scalar product XA are equally obvious

The operator A is said to be accretive provided for each A > 0O the
operator (I+)\A)_1 is nonexpansive (hence necessarily single-valued). The
resolvent is defined by Jk = (I+kA)ﬂ1, and the Yosida approximation AX =
(I—JX)/k. Thus J, is nonexpansive and Ak is Lipschitzian; it follows from the
contraction mapping principle that operators of the form I-T, T nonexpansive,
are accretive, hence that Ak is accretive. An accretive operator in Hilbert
space is also said to be monotone. A maximal monotone operator on a Hilbert
space E is a monotone operator which is not properly contained in another

monotone operator; in that case the values Ax are closed convex sets, and the

minimal section A0 of A is defined by on = the unique element of Ax of

minimal norm. Maximal accretiveness is not a very useful notion in Banach
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spaces: a better concept is the m—accretiveness of A: A is accretive and
R(I+rA) D E for some A > 0 (hence, by a standard argument, for all A > 0).

An accretive operator A is said to satisfy the range condition provided

R(I+AA) O cl D(A) for all sufficiently small A > 0. The importance of the

range condition is the generation theorem [59] for contraction semigroups: if
A satisfies the range condition then S(t)x = lim (I+(t/n)A) ®x  exists for
each x in ¢l D(A) and defines a contraction semigroup on ¢l D(A): S(t+s) =

S(t)S(s), S(t)x is continuous in t > 0 for each fixed x, S(0) = I, and each
S(t) is a nonexpansive self-mapping of cl D(A).

Convex functions f : E — (-, +=] are permitted to assume the value +o,
but not identically; f is said to be proper. It is well-known that the lower

semi-continuity of such a function implies its weak sequential l.s.c. The

subgradient of f at x is the set 9f(x) of w in E*, the dual space of E, which

satisfy the subgradient inequality for f,

f(y) > f(x) + (w, y-x) for all y in E.

The subdifferential of f is the multivalued operator df which assigns df(x) to
x:; it is a generalization of the classical gradient of f. The normalized

duality mapping, denoted by J, is by definition the subdifferential of

1/211 '"2:, equivalently, J is characterized by
Ix = (we E* :llwll = Dxll, (w0 = lxll?).

Usually when we need the duality map, it will be in a space whose norm is
Frfchet differentiable; in that case J is the actual gradient of 1/2 -l 2.
For the definition of a 'weakly continuous duality map’' see e.g. [35].

When E is Hilbert space and f is a proper l.s.c. convex function, df
is a maximal monotone operator. (This is true even when E is not a Hilbert
space, but is not needed here.)

A standard reference for monotone operators and contraction semigroups in
Hilbert space is Brezis [27], while Barbu [18] serves for accretive operators
and contraction semigroups in Banach spaces. Browder [37] is encyclopaedic,
with an extensive bibliography. It is very out of date, but the sections on
accretive operators and nonexpansive mappings are still very readable. Haraux
[87], [88] is essential reading for anyone interested in the periodic or

almost—-periodic behavior of evolution systems.

2. ASYNPTOTIC REGULARITY AND AVERAGED MAPPINGS. By an averaged mapping we

mean one of the form TX = AT + (1-A)I, where 0 ¢ A ¢ 1 and I is the identity
operator. When T is nonexpansive, so is Tk‘ and both have the same fixed-
point set, but T)\ has much more felicitous asymptotic behavior than the

original mapping.
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Krasnoselski [106] was the first to notice this regularizing effect (for
A =1/2). He proved that if E is uniformly convex and C is compact (recall
that C is ALWAYS assumed to be convex!) then the iterates of T1/2 converge
strongly to a fixed—-point of T. Since the existence of a fixed-point is
guaranteed by Schauder’'s theorem, the novelty of this result lay in its
asymptotic statement. Krasnoselski gave no estimate of the rate of conver-
gence, and it is typical of iteration methods involving nonexpansive mappings
that their convergence may be arbitrarily slow; see Oblomskaja [116] for a
linear example where convergence is slower than n % for all a in (0,1).
(Patterson [125], Chapter 4 contains a thorough discussion of successive
approximation methods for linear operators, and an extensive bibliography.)

Edelstein [71] observed that the uniform convexity of E in Krasnoselski’s
theorem can be relaxed to strict convexity, and Schaefer [152] proved conver-—
gence for a general Tk when T is weakly continuous.

Edelstein’'s observation represents a recurring theme in the study of
nonexpansive mappings: whereas 'static’' conditions, such as strict convexity,
often suffice under compactness hypotheses, 'dynamic’ conditions (involving
uniformity in base points) are usually needed in the absence of compactness.
Thus one argument for Edelstein’s version proceeds by reducing the convexity
argument to points in the strong w—-limit set: the only role of strict convex-—
ity of E is to guarantee that averaged mappings are 'anti-isometric’ in the
sense that [IT,x - T,yll < lIx - yll unless actually T,x - T,y = x - y. If C
is compact then ws(x) -— the set of strong subsequential limits of {Tix] == is
nonempty, T,-invariant, and TX is an isometry on ws(x). Since T, is anti-
isometric, it acts as a translation on ms(x), and since ws(x) is bounded, each
point of ms(x) is therefore a fixed-point of T. Thus for any y in ws(x) the
sequence (|l T; x — yll } is decreasing (since y is a fixed—-point) and has a
subsequence converging to 0 (since y ¢ w.(x)). This shows T;x — .

Browder and Petryshyn [33] separated out the geometric condition neces-—
sary to make this work when C is not compact: T is said to be asymptotically

regular on C if for each x in C, Ty — Tn+1

x — 0asn— «. They sharpened
Schaefer’'s result by showing that the uniform convexity of the underlying
space implies that each Tl is asymptotically regular on bounded convex sets.
Kirk [96] showed that in uniformly convex spaces, a more general convex
combination uOI+ulT+...+anTn is asymptotically regular if C is bounded and

aq > 0. Many papers generalized the Browder—-Petryshyn theorems to iterations

of the form
(2.1) Xppq = A Tx 4 (l—kn)xn,

where the coefficients A, were assumed bounded away from 0 and 1; this is a
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special case of an iteration of Mann [110] (see Groetsch [83], Senter and
Dotson [154], Outlaw [120], Dotson [65]).

Since these proofs seemed to use uniform convexity in an essential way,

Ishikawa's 1976 discovery [93] was startling:
THEOREM 2.1. If C is bounded then T, is asymptotically regular for each
0 ¢ » ¢ 1. (There are no restrictions on the geometry of the Banach space!)

Edelstein and O'Brien [74] independently found a very different proof of
Theorem 2.1, based on the idea of embedding E into a continuous function space
and regarding {Tﬁx} as a sequence in that space. Ray and Sine [136] also give
a geometric proof, based on extensions of nonexpansive mappings to an order
interval in an overlying continuous—function space;, but the compactness of T
is essential to that method. Xirk [99] and Goebel and Kirk [81] have extended
Ishikawa’'s method to metric spaces with convexity structure.

It has been objected that Ishikawa's proof, while self-contained, is

computational and not very intuitive; but [74], [81] and [99] are also compu-
tational, and [136] is not sufficiently general. Part of the complication of
Ishikawa’s proof is due to his consideration of the more general iteration
(2.1), where {kn] is bounded away from 1 and I A = «; the conclusion is
that x -Tx  —> 0. The proof of just the asymptotic regularity of Ty is
simpler, and relies on a trivial geometric fact: if some proper convex
combination of points on the boundary of the unit ball of a Banach space also
lies on the boundary of the ball, then the points lie on a face of the ball.
We need a uniform version:
LEMMA 2.1. For each & > 1, 0 ¢ ¢ ¢ 1 there exists & > 0 (explicitly, & =
e/(28-1)) such that whenever {vl, Vs eees vn] are points in an annulus Sg =
{ueBE:1-8 Cllull <1486} of a Banach space E such that a convex combina-—
tion v* = zi:aivi also belongs to Sy, then every convex combination v =
zz:kivi whose coefficients satisfy the restriction A; { €a; belongs to the
annulus SF

PROOF. Without loss of generality we may assume that each ay > 0 and the
maximum of the ratios X;/a; (which must be positive) occurs at i = 1; put By =

ay/kqy, and B; =a; = BgAr; for i > 1. Then By 2 1/¢&, each B; 20, and E B; =

1. We also have
n
v¥ = Blv + E Bivi'
i=2

and because Vi v* ess’

n
1 -8 ¢ lvell Cpylivll +Zi—2ﬁi(1+6) =y livil + (1-pp) (1+8).

Since By 5 1/¢, this implies 1 — & < lvll. Also llvll ¢ 1+e because & < e.
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PROOF OF THEOREM 2.1. Fix A in (0,1), and put x = T}x, so that x

A n+1l
kan + (1—A)xn. Applying the finite—difference operator Atn = thyp T oty we
obtain
(2.2) L A (1—K)un for w  :=Ax , v o= ATx .

Since T is nonexpansive, ||vn|| < ]lunll for all n. Thus (2.2) implies that

["uu"} is decreasing, hence convergent to a limit d » 0, and {l| vn”}
converges to the same limit. We may assume without loss of generality that
d > 0.

Using (2.2) we obtain, for fixed p > 0, a representation of u as a

n+p+1

convex combination

un+p+1 = apvn+p * ap—lvn+p*1 AR TS BT L

All we need to know about the coefficients is that they are non—zero and
independent of n. Applying Lemma 2.1 we see that for any 0 ¢ g ¢ d, for
sufficiently large n all points in the convex hull of {un+1, Va4lr oo vn+p]

belong to the annulus Sd—s' Taking u to be the barycenter of {Vn+1' il 8§
vn+p} and using the definition of v, as Alxn, we find in particular that

lITx - Txn|| > p(d—e). This is impossible for & small enough and p large

n+p+1
enough, because {xn} is bounded. -9.E.D.
A closer analysis of this proof shows that even if C is not bounded, we
have still proved
lim |lTR+px - T2x|| =p lim ||Ti+1x = TRx”
n—® n—e
for each positive integer p. This observation and a continuous analogue were
noted in [7]: if T : C —> C is nonexpansive, & > 0, and u : RY — C is a
solution of the equation du/dt + 8(I-T)u(t) = 0, then for each h > 0,
lim llu(t+h) - w(t)ll = h 1im [ldu/dtll.
t— t—
For example, the Yosida approximations AK of an accretive operator A
satisfying the range condition on C = ¢l D(A) are of this form. Reich [149]
subsequently generalized the results of [7] to show that for such a solution,
if E is smooth and E* has a Frechet-differentiable norm, the strong

lim du/dt exists. See Section 4.
t—w

3. CONVERGENCE OF APPROXIMANTS. One of the most remarkable of the recent

results on asymptotic behavior is the following theorem of Reich [147]:
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THEOREM 3.1. Suppose E is uniformly smooth and C is bounded. Then for each

point ¢ of C and each 0 ¢ t < 1 there exists a unique point x, in C satisfying
(3.1) x, = tTxy + (1-t)e,

and the stromg 1lim x
tt1

¢ exists and is a fixed—-point of T.

This settled a problem of approximately 13 years’ standing, and is the
more remarkable because of its unexpectedness and the simplicity of its proof
The proof we present appeared (in slightly more genmeral form) in Bruck-Reich
[55], and also yields some insight into the nonlinear mean ergodic theorem and

the notion of the asymptotic center.

The existence of a point x, in C satisfying (3.1) is another folk

t
theorem: tT + (1-t)c is a Picard contraction of C into C (with Lipschitz
constant t), and therefore has a unique fixed-point. The first version of
Theorem 3.1 was proved by F. Browder [32] and B. Halpern [86] in Hilbert

space; Halpern relied heavily on the inequality

_ 2 _ 2 _ 2
||xt xs|| < Il x cll les cll=,

t

valid for 0 ( s <t < 1. Browder [35] partially extended this inequality to

smooth spaces in the form
(3.2) (J(xt -y, xg —¢c) O for all y in F(T),

where J is the normalized duvality map of E, providing the first essential tool
for the proof of Theorem 3.1. (Apply the subgradient inequality to the left

side of the inequality
172 1t Ha-o)-(y-all2 ¢ 17205~y 11 2)

Browder used (3.2) to show that if E is uniformly convex and has a
'weakly continuous duality map’ then {xt) is precompact; when E is merely
smooth, Bruck [38, Theorem 2.3] used the weak lower semi-continuity in x, of
the left side of (3.2) to prove the uniqueness of strong subsequential limits
of x; as t t 1 (hence the convergence of Xy under Browder's hypotheses). See
also Reich [138].

To understand Reich's idea we must first recall Edelstein’s definition

[72], [73] of the asymptotic center of a bounded sequence in a Banach space E.

This is the set of minimizers of the (obviously convex and continuous)

functional

(3.3) f(y) := lim sup ||xn -yl

n—

One may seek to minimize f globally, or only on a certain set. Naively, one
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globally minimizes a convex function by setting its gradient to 0. The prob-
lem with the function defined by (3.3) is that it is not differentiable, even
if the space has a very smooth norm. The problem lies in the lim sup.

Baillon [12] replaced a lim sup by a limit through a filter; when we can
reduce to a separable domain, as we can in this case, we can even take the
limit through a subsequence (Reich [147]). Instead, we adopt the essentially
equivalent technique of Bruck-Reich [55]: we fix a Banach limit LIM (any
norm-one positive linear functional on ‘[m will do) and instead of (3.3) we

consider
(3.4) f(y) := LIM/ 172 llxn - y||2.

Clearly f is a continuous, convex function on E and f(y) — « as lyll — «.
If E is uniformly smooth then f is indeed differentiable, and we compute its

derivative to be
(f'(y),h) = —LIMn (I(xn - y), h)

for any y and h in E. Uniformly smooth Banach spaces are reflexive, hence C
is boundedly weakly compact and f assumes a minimum on C by a standard
argument. Denote the set of minimizers of f on C by MinC. Since f is smooth,
each y* in Min, satisfies the variational inequality (f'(y*),y-y*) > 0 for

all y in C, i.e.,
LIM (J(xn—y'), y-y*) <0 for all y in C.
Since lim inf ¢{ LIM for any Banach limit, it follows that

(3.5) lim inf (J(xn—y*), y-y*) < 0 for all y in C, y* in Mine.
n—e

Now we specialize [xn} and prove Theorem 3.1. Let t t 1 and for eachn
let x be the unique solution of (3.1) for t = t,- The nonexpansiveness of T
and the monotonicity of LIM imply f is a Liapunov function for T:
f(Ty) < f(y) for all y; thus Mine, is a nonempty closed convex T-invariant
subset of C. By a theorem of Baillon [13] (see Turett [160] for another
aspect), bounded closed convex subsets of uniformly smooth Banach spaces have
the fixed-point property for nonexpansive mappings. Thus we can choose a
fixed—point y* of T in C which minimizes f on C.

On the one hand, (3.5) is satisfied for this y* because y* minimizes f.

On the other, (3.2) implies

(3.6) (T(xy=y*), x, - ¢) €0,

Taking y = ¢ in (3.5) and adding (3.6), we obtain lim inf Il x_—y*Il % Co0.
fpr—a'®
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This shows that [xt: 0 <t <1} is relatively compact. The convergence of

{x;] now follows from the uniqueness argument of Bruck [38].

For a version of Theorem 3.1 when the domain of T is not convex and T is
only locally nonexpansive, see Bruck-Kirk-Reich [56].

The special property of Banach limits —— shift—-invariance —— was not used

in the proof of Theorem 3.1. When it is used, we obtain a very curious ’'dual’
mean ergodic theorem:
THEOREM 3.2. Suppose E is uniformly smooth, T : E~—> E is nonexpansive, and
I' has a fixed-point. Then for any x in E there exists a fixed-point f of T in
the asymptotic center of {T®x) such that the sequence {J(T%xz—f)} is weakly
almost—convergent to O in E¥*, where J denotes the normalized duality map.

For the definition of 'weakly almost convergent’ see the discussion in
Section 6. The proof of Theorem 3.2 can be found in [55] (the observation
that f can be taken to be in the asymptotic center of {T"™x} is a mild variant
which follows from the fact that all Banach limits yield the same value of
LIM IT™x - £ll for f in F(T), namely the usual limit.) The requirement that

T be everywhere defined is a noteworthy restriction.

4. Unbounded behavior. Another old problem which has had a recent elegant
solution concerns the convergence of {T"x/n}, when C is unbounded. This study
was initiated by Pazy [126], who proved:
THEOREM 4.1. Suppose E is Hilbert and T : E —> E is nonexpansive. Then
¢l R(T-I) is convex and for each x in E, {T"x/n} converges to the point of
¢l R(T-I) of minimum norm.

I-T is maximal monotone when T is nonexpansive and everywhere—defined, so
it was already known that cl R(T-I) is convex; but when T is only defined on a
convex subset C, this set may fail to be convex, and the main obstruction in
this case appeared to be whether R(I-T) has the minimum property. (A subset D
of E is said to have the minimum property if dis (0, D) = dis (0, co D).)
Subsequently Reich [146], [148], [149] has shown that it does (in a very wide
class of Banach spaces).

Note that {lIT™x/nll} always converges. This is an old semigroup trick:

LEMMA 4.1. If (a ] is a sequence of positive real numbers such that

(4.1) La_ + a, for all m, n ¢ Z+,

An+n m

then {an/n] converges.

PROOF. It is a folk theorem that if a subset B of Z' is closed under
addition and contains two consecutive integers, then B contains all suffic—
iently large integers. (If a, b ¢ B are relatively prime and c¢ ¢ Z, find

integers x and y with ax+by = ¢. Adding multiples of b to x while simul-



