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Preface

The past decade could be seen as the heyday of neurocomputing: in which
the capabilities of monolithic nets have been well explored and exploited. The
question then is where do we go from here? A logical next step is to examine
the potential offered by combinations of artificial neural nets, and it is that
step that the chapters in this volume represent.

Intuitively, it makes sense to look at combining ANNSs. Clearly complex
biological systems and brains rely on modularity. Similarly the principles of
modularity, and of reliability through redundancy, can be found in many
disparate areas, from the idea of decision by jury, through to hardware re-
dundancy in aeroplanes, and the advantages of modular design and reuse
advocated by object-oriented programmers. And it is not surprising to find
that the same principles can be usefully applied in the field of neurocomput-
ing as well, although finding the best way of adapting them is a subject of
on-going research.

As reflected in the title of this volume, it is possible to make a distinction
between two main modes of combining artificial neural nets; ensemble and
modular. Under an ensemble approach, several solutions to the same task,
or task component, are combined to yield a more reliable estimate. Under a
modular approach, particular aspects of a task are dealt with by specialist
components before being recombined to form a complete solution. Although
their operation differs, both modes can be shown to result in improved per-
formance, and both are represented here. Taken as a whole, the chapters in
this volume provide evidence of the advantages of combining nets (by either
means). They also explore different methods for creating and combining nets,
and provide explanations for their relative effectiveness. This book provides
a comprehensive picture of the current state of the art in the new domain of
combining Artificial Neural Nets to form multi-net systems. The focus of the
book is on combining ANNs, but the methods and results have implications
and relevance to the wider machine learning community.

Although they have been revised and updated, versions of some of the
chapters (Chapters 1,4,5,6,7,9,10) in the book appeared in two Special Issues
of the journal Connection Science; Connection Science (1996) 8, 3/4 and
Connection Science (1997), 9, 1. Connection Science is published by Carfax,
P.O. Box 25, Abingdon, Oxfordshire, 0X14 3UE.
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1. Multi-Net Systems

Summary.

This chapter provides an introduction to the main methods and issues
in the combination of Artificial Neural Nets. A distinction is made between
ensemble and modular modes of combination, and the two are then treated
separately. The reasons for ensemble combination are considered, and an
account is provided of the main methods for creating and combining ANNs
in ensembles. This account is accompanied by a discussion of the relative
effectiveness of these methods, in which the concepts of diversity and selec-
tion are explained. The review of modular combination outlines the main
methods of creating and combining modules, depending on whether the re-
lationship between the modules is co-operative, competitive, sequential or
supervisory. An overivew of the chapters in the book forms the conclusion
section.

The honeymoon is officially over, and neural computing has moved beyond
simple demonstrations to more significant applications. There is a growing
realisation that such applications can be facilitated by the development of
multi-net systems. Multi-net systems can result in solutions to tasks which
either cannot be solved by a single net, or which can be more effectively solved
by a system of modular neural net components. Similarly, better performance
can be achieved when ANNSs, as unstable predictors, are redundantly com-
bined. Arguably, there are few neural net applications accomplished by means
of a single net where better performance could not be achieved if this single
net were replaced by a multi-net system. As well as performance improve-
ment, there are other advantages to decomposing a task into modular com-
ponents. For example, a modular system can be easier to understand and
to modify. And modularity is almost necessarily implicated in any brain or
biological modelling.

It seems likely that multi-net systems will be an important component
of future research in neural computing. There are a number of areas from
which inspiration and guidance about the construction of such systems can
be gained. Clearly we can expect a major contribution from statisticians,
and from the wider machine learning community, in terms, for instance, of
explanations of the relative effectiveness of different methods for creating
and combining ensemble members. Although the focus of concern here is on
the combining of artificial neural nets in particular, research on combining
other kinds of unstable predictors (e.g. decision trees, see Breiman, Chap-
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ter 2, Drucker, Chapter 3) is also relevant, and there is no reason why the
members of an ensemble should not consist of a variety of predictors. Insights
about combining could potentially be gained from consideration of other ar-
eas as well, such as the modelling of biological systems which also make use
of redundant and modular elements. And the concept of reliability through
redundancy is one that is familiar in a number of different areas, such as
software engineering (see Eckhardt [1], for example).

The aim of this chapter is to provide a review of the main methods that
have been proposed for combining artificial neural net modules and ensem-
bles, and to examine the principal motivations for creating multi-net systems.
However, we shall first turn our attention to a consideration of the distinc-
tion between ensembles and modules, and of the ways in which they can be
combined to form multi-net systems.

1. Task Level

B) Modular Combination

[Componeﬂ @)mponenﬂ‘] Ezmnponemq

A) Ensemble Combination

Task Task
Solution Solution

2. Sub-task level

Task
Solution

C) Ensemble Combination D) Modular Combination

Sub- Sub- Sub-
component| component2 component3

Fig. 1.1. Ensemble and modular multi-net systems, at task and sub-task levels

component |

1.0.1 Different Forms of Multi-Net System

It is useful to make a distinction between ensemble and modular combinations
of artificial neural nets [2]. The term ‘ensemble’ is the one commonly used for
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combining a set of redundant nets (e.g. [3]), although the term ‘committee’
[4] or ‘committee machine’ has also been used for the same purpose. In an
ensemble combination, the component nets are redundant in that they each
provide a solution to the same task, or task component, even though this
solution might be obtained by different means. By contrast, under a modular
approach, the task or problem is decomposed into a number of subtasks,
and the complete task solution requires the contribution of all of the several
modules (although individual inputs may be dealt with by only one of the
modules). Both ensemble and modular combinations can exist at either a
task, or a sub-task level, as shown in Figure 1.1.

— Task level: An ensemble could consist of a number of different solutions to
an entire task, or problem (Figure 1.1a). Similarly, a task solution might
be constructed from a combination of a number of decomposed modules
(Figure 1.1b).

— Sub-task level. When a task or an application is decomposed into compo-
nent modules, each modular component could itself consist of an ensemble
of nets, each of which provided a solution for that same modular compo-
nent (Figure 1.1c). Alternatively, each module could be further subdivided
into yet more specialist modules (Figure 1.1d).

At both levels in Figure 1.1, the distinction between an ensemble or mod-
ular combination depends on the presence or absence of redundancy; note the
redundant components (several versions of Subcomponent 1) in the ensemble
sub-task example, (Figure 1.1c) as compared to the lack of redundancy (Sub-
components 1, 2 and 3) in the modular sub-task example (Figure 1.1d). It
should be noted that the modular examples (Figure 1.1b and d) at both levels
could either result from the decomposition of a task into smaller components,
or could represent ’bottom-up’ fusion of information from distinct sensors,
which provides a link to the quite considerable literature on sensor fusion [see
(5] for a review]. Here, rather than decomposing in order to simplify the task,
the modular structure can arise as a consequence of the available inputs.

Ensemble and modular combinations should not be thought of as mutually
exclusive. It should be noted that Figure 1.1 is designed to show building
blocks from which a multi-net system could be constructed: an actual multi-
net system could consist of a mixture of ensemble and modular combinations
at different levels. As an illustration, Figure 1.2 shows a hypothetical multi-
net system which consists of both ensemble and modular components. At
the top level, the system consists of an ensemble combination of three task
solutions. At the sub-task level however, one of the task solutions is arrived
at as the result of a modular combination of distinct components. The three
task solutions are produced in different ways. The first is computed on the
basis of data from one of three sensors. The second is computed on the basis
of a cooperative combination of the output of three sensors. And the third
is assembled from the modular combination of three subcomponents, each of
which relies on input from a single sensor. Although this figure assumes the



