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Preface

This ninth edition of Introductory Mathematical Analysis continues to provide
a mathematical foundation for students in business, economics, and the life and
social sciences. It begins with noncalculus topics such as equations, functions,
matrix algebra, linear programming, mathematics of finance, and probability.
Then it progresses through both single-variable and multivariable calculus, in-
cluding continuous random variables. Technical proofs, conditions, and the like,
are sufficiently described, but are not overdone. At times, informal intuitive ar-
guments are given to preserve clarity.

fppLicaTIONS

An abundance and variety of applications for the intended audience appear
throughout the book; students continually see how the mathematics they are
learning can be used. These applications cover such diverse areas as business,
economics, biology, medicine, sociology, psychology, ecology, statistics, earth sci-
ence, and archaeology. Many of these real-world situations are drawn from lit-
erature and are documented by references. In some, the background and context
are given in order to stimulate interest. However, the text is virtually self-
contained, in the sense that it assumes no prior exposure to the concepts on
which the applications are based.

(HanGes 10 THE NinTw EprTion

Principles in Practice

This new element provides students with even more applications. Located in
the margin of the text, these additional exercises give students real-world
applications and more opportunities to see the chapter material put into prac-
tice. Principles in Practice applications that can be solved using a graphing
calculator are indicated by an icon . Answers to Principles in Practice applica-
tions appear at the end of the text.

Concepts for Calculus Appendix

New to the ninth edition, this useful end-of-text appendix features additional cal-
culus concepts for student review. Such topics include: Slopes and Equations of
Lines, Secant Lines and Average Rate of Change, and Slope of a Curve and
Derivative.

Updated Mathematical Snapshots

Included at the end of many chapters, this popular feature has been revised for
the ninth edition. Each Snapshot provides an interesting, and at times, novel ap-
plication involving the mathematics of the chapter in which it occurs. Many of
the Snapshots also include exercises, reinforcing the text's strong emphasis on
hands-on practice.

xi
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Reramen Features

Interspersed throughout the text are many warnings to the student that point
out commonly made errors. These warnings are indicated under the heading
Pitfall. Definitions are clearly stated and displayed. Key concepts, as well
as important rules and formulas, are boxed to emphasize their importance.
Throughout the text, notes to the student are placed in the margin. They reflect
passing comments which supplement discussions.

More than 850 examples are worked out in detail. Some include a
strategy that is specifically designed to guide the student through the logistics
of the solution before the solution is obtained.

An abundant number of diagrams (almost 500) and exercises (more than
5,000) are included. In each exercise set, grouped problems are given in in-
creasing order of difficulty. In many exercise sets the problems progress from
the basic mechanical-drill type to more interesting thought-provoking prob-
lems. Many real-world type problems with real data are included. Considerable
effort has been made to produce a proper balance between the drill-type exer-
cises and the problems requiring the integration of the concepts learned.

In order that a student appreciates the value of current technology, op-
tional graphics-calculator material appears throughout the text both in the ex-
position and exercises. It appears for a variety of reasons: as a mathematical
tool, to visualize a concept, as a computing aid, and to reinforce concepts.
Although calculator displays (see below) for a TI-82 accompany the corre-
sponding technology discussion, our approach is general enough so that it can
be applied to other fine graphics calculators.
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In the exercise sets, graphics-calculator problems are indicated by an icon.
To provide flexibility for an instructor in planning assignments, these problems
are placed at the end of an exercise set.

Each chapter (except Chapter 0) has a review section that contains a
list of important terms and symbols, a chapter summary, and numerous review
problems.

Answers to odd-numbered problems appear at the end of the book. For
many of the differentiation problems, the answers appear in both unsimplified
and simplified forms. This allows students to readily check their work.

Courst PLannme

Because instructors plan a course outline to serve the individual needs of a par-
ticular class and curriculum, we shall not attempt to provide sample outlines.
However, depending on the background of the students, some instructors will
choose to omit Chapter 0, Algebra Refresher, or Chapter 1, Equations. Others
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may exclude the topics of matrix algebra and linear programming. Certainly
there are other sections that may be omitted at the discretion of the instructor.
As an aid to planning a course outline, perhaps a few comments may be help-
ful. Section 2.1 introduces some business terms, such as total revenue, fixed cost,
variable cost and profit. Section 4.2 introduces the notion of supply and de-
mand equations, and Section 4.6 discusses the equilibrium point. Optional sec-
tions, which will not cause problems if they are omitted, are: 7.3,7.5,15.4,17.1,
17.2,19.4,19.6,19.9 and 19.10. Section 17.8 may be omitted if Chapter 18 is not
covered.

SUPPLEMENTS
For Instructors

Instructor’s Solution Manual. Worked out solutions to all exercises and
Principles-in-Practice applications.

Test Item File. Provides over 1,700 test questions, keyed to chapter and section.

Prentice Hall Custom Test. Allows the instructor to access from the computer-
ized Test Item File and personally prepare and print out tests. Includes an edit-
ing feature which allows questions to be added or changed.

For Students

Student Solutions Manual with Visual Calculus and Explorations in Finite
Mathematics Software. Worked out solutions for every odd-numbered
exercise and all Principles-in-Practice applications. Software includes unique
programs which enhance the fundamental concepts of calculus and finite math-
ematics visually, and include exercises taken directly from the text.

For Instructors and Students

PH Companion Website. Designed to complement and expand upon the text,
the PH Companion Website offers a variety of interactive learning tools, in-
cluding: links to related websites, practice work for students, and the ability for
instructors to monitor and evaluate students’ work on the website. For more
information, contact your local Prentice Hall representative.
www.prenhall.com/Haeussler
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OBJECTIVE

To become familiar with sets, the
classification of real numbers, and
the real-number line.

CHAPTER

Sessvssccscsavnnnns

fllgebra Refresher

0.1 Purpost

This chapter is designed to give you a brief review of some terms and
methods of manipulative mathematics. No doubt you have been exposed to
much of this material before. However, because these topics are important
in handling the mathematics that comes later, perhaps an immediate second
exposure to them would be beneficial. Devote whatever time is necessary
to the sections in which you need review.

0.2 Sers AND ReAL NuMBERS

In simplest terms, a set is a collection of objects. For example, we can speak
of the set of even numbers between 5 and 11, namely, 6, 8, and 10. An object
in a set is called an element or member of that set.

One way to specify a set is by listing its elements, in any order, inside
braces. For example, the previous set is {6, 8, 10}, which we can denote by a
letter such as A. A set A is said to be a subset of a set B if and only if every
element of A is also an element of B. For example, if A = {6, 8,10} and
B = {6, 8,10, 12}, then A is a subset of B.

Certain sets of numbers have special names. The numbers 1, 2, 3, and
so on form the set of positive integers (or natural numbers):

et oy = {1,2,3,...}
positive integers T
The three dots mean that the listing of elements is unending, although we
know what the elements are.
The positive integers, together with 0 and the negative integers
—1, —2, =3, ..., form the set of integers:

set of

. = { ey —3,=2,=1,0,1,2,3, ... }.
integers




2 Chapter 0 Algebra Refresher

The reason for g # 0 is that we
cannot divide by zero.

Every integer is a rational number.

The real numbers consist of all
decimal numbers.

The set of rational numbers consists of numbers, such as 3 and 3 that can
be written as a ratio (quotient) of two integers. That is, a rational number is a
number that can be written as p/q, where p and g are integers and ¢ # 0. (The

19 —2
symbol *“ # " is read “is not equal to.”) For example, the numbers ~—~, —, and

20" 7
—6 . 213 —4
——, are rational. We remark that — —, —, ——, and 0.5 all represent the same
— 426 —8
rational number. The integer 2 is rational, since 2 = T In fact, every integer is
rational.

All rational numbers can be represented by decimal numbers that rermi-
nate, such as 3 = 0.75 and 3 = 1.5, or by nonterminating repeating decimal
numbers (composed of a group of digits that repeats without end), such as
% = 0.666. .. ,1—14 = —0.3636..., and % = 0.1333.... Numbers represent-
ed by nonterminating nonrepeating decimals are called irrational numbers. An
irrational number cannot be written as an integer divided by an integer. The
numbers 7 (pi) and \/2 are irrational.

Together, the rational numbers and irrational numbers form the set of
real numbers. Real numbers can be represented by points on a line. First we
choose a point on the line to represent zero. This point is called the origin. (See
Fig. 0.1.) Then a standard measure of distance, called a “unit distance,” is cho-
sen and is successively marked off both to the right and to the left of the origin.
With each point on the line we associate a directed distance, or signed number,
which depends on the position of the point with respect to the origin. Positions
to the right of the origin are considered positive (+) and positions to the left
are negative (—). For example, with the point } unit to the right of the origin
there corresponds the signed number 3, which is called the coordinate of that
point. Similarly, the coordinate of the point 1.5 units to the left of the origin
is —1.5. In Figure 0.1, the coordinates of some points are marked. The arrow-
head indicates that the direction to the right along the line is considered the
positive direction.

Some Points and Their Coordinates

-7 -15

oLl 1

1 1 le Positive
direction

1 1

T V2 ™
-3 -2 -1 0 1 2 3
Origin

FIGURE 0.1 The real-number line.

To each point on the line there corresponds a unique real number, and to
each real number there corresponds a unique point on the line. For this rea-
son, we say that there is a one-to-one correspondence between points on the
line and real numbers. We call this line a coordinate line or the real-number
line. We feel free to treat real numbers as points on a real-number line and
vice versa.
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m Exercise 0.2

In Problems 1-12, classify the statement as either true or false. If false, give a reason.

1. —7is an integer. 2. 1 is rational.
3. —3is a natural number. 4. 0is not rational.
5. 5isrational. 6. 7 is a rational number.
7. 5 is not a positive integer. 8. mis areal number.
9. ¢ is rational. 10. 0is a natural number.
11. —3is to the right of —4 on the real number line. 12. Every integer is positive or negative.

0.3 SoME PROPERTIES OF REAL NUMBERS

To state and illustrate the
following properties of real
numbers: transitive, commutative,
associative, inverse, and 1. The Transitive Property of Equality
distributive. To define subtraction
and division in terms of addition
and multiplication, respectively.

We now state a few important properties of the real numbers. Let a, b, and c be
real numbers.

Ifa=band b = c,thena = c.

Thus, two numbers that are both equal to a third number are equal to each
other. For example,if x = yand y = 7,thenx = 7.

2. The Commutative Properties of Addition and Multiplication
at+b=b+a and ab = ba.

This means that two numbers can be added or multiplied in any order. For ex-
ample,3 + 4 =4 + 3and 7(—4) = (—4)(7).

3. The Associative Properties of Addition and Multiplication
a+(b+c)=(a+b) +c and a(bc) = (ab)c.

This means that in addition or multiplication, numbers can be grouped in any
order. For example, 2 + (3 + 4) = (2 + 3) + 4, in both cases, the sum is 9.
Similarly, 2x + (x + y) = (2x + x) + yand6(3 - 5) = (6 -+ ) - 5.

4. The Inverse Properties
For each real number a, there is a unique real number denoted —a
such that
a—+ (—a) =0.

The number —a is called the additive inverse, or negative, of a.

For example, since 6 + (—6) = 0, the additive inverse of 6 is —6. The
additive inverse of a number is not necessarily a negative number. For exam-
ple, the additive inverse of —6is 6, since (—6) + (6) = 0. That is, the nega-
tive of —6 is 6, so we can write —(—6) = 6.
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Zero does not have a multiplicative
inverse because there is no number
that, when multiplied by 0, gives 1.

a . .
p meansa times the reciprocal of b.

For each real number a, except 0, there is a unique real number denoted

a ! such that
a-a =

The number a ' is called the multiplicative inverse of a.

Thus, all numbers except 0 have a multiplicative inverse. You may recall that

. 1 . .
a ! can be written — and is also called the reciprocal of a. For example, the
a

multiplicative inverse of 3 is 3, since 3() = 1. Hence, § is the reciprocal

of 3. The reciprocal of 1, is 3, since (3)(3) = 1. The reciprocal of 0 is not

defined.

5. The Distributive Properties
a(b+c)=ab +ac  and (b + ¢)a = ba + ca.

For example, although 2(3 + 4) = 2(7) = 14, we can write
23 +4)=123)+2(4) =6+ 8 =14
Similarly,
(2 +3)(4) =2(4) +3(4) =8+ 12 = 20,
and x(z +4) = x(z) + x(4) = xz + 4x.
The distributive property can be extended to the form
a(b+ ¢+ d) =ab + ac + ad.

In fact, it can be extended to sums involving any number of terms.
Subtraction is defined in terms of addition:

a—>b means a + (—b),

where —b is the additive inverse of b. Thus,6 — 8 means 6 + (—8).
In a similar way, we define division in terms of multiplication. If b # 0,

then a = b, or %, is defined by

a ~1
E = a(b )

1
Since b™! = —,
mce

e =a(2)

3 . . . . . . .
Thus, 2 means 3 times 1, where 1 is the multiplicative inverse of 5. Sometimes

a
we refer toa + b or 33 the ratio of a to b. We remark that since 0 does not
have a multiplicative inverse, division by 0 is not defined.
The following examples show some manipulations involving the preced-

ing properties.

EXAMPLE 1 Applying Properties of Real Numbers

a. x(y — 3z + 2w) = (y — 3z + 2w)x, by the commutative property of
multiplication.



