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Preface

To understand the evolution of things, one must un-
derstand something about their history as well as the
environmental forces thathad shaping influences upon
them. Information Foraging Theory evolved through
a series of fortuitous historical accidents, as well as a
number of enduring shaping forces. A critical event
was my move to the Palo Alto Research Center
(PARC). Soon after I came to PARC at the beginning
0f 1992, I became involved in trying to develop studies
and models around a set of projects that were collec-
tively called intelligent information access. This in-
cluded the novel information visualization systems
investigated in the User Interface Research Area (see,
e.g., Card et al., 1999) as well as the new techniques
for browsing and searching being created in the
Quantitative Content Area (e.g., Rao et al., 1995). As
part of this effort, a group of us (including Stu Card,
Dan Russell, Mark Stefik, and John van Gigch from
California State University—Sacramento) were run-
ning some quick-and-dirty studies of people such as
business intelligence analysts and MBA students. Our

studies of people doing information-intensive work
started to give me some sense of the range of phe-
nomena that we would need to address. Our study
participants clearly were faced with massive volumes
of information, often under deadline conditions, and
making complex search decisions based on assess-
ments that were enveloped in a great deal of un-
certainty.

These inforration-intensive tasks seemed to be
different than the human-computer interaction tasks
that were being addressed by cognitive engineering
models in the early 1990s, or the science, math, and
programming tasks addressed by intelligent tutoring
systems of that same period. Such cognitive models
addressed tasks that tended to occur in task environ-
ments that (although large and complex) were well
defined by a circumscribed domain of possible goals,
elements of domain knowledge (e.g,., about Lisp pro-
gramming, algebra, word processing), and potential
actions (e.g., in a formal language, or in a user inter-
face). In contrast, the behavior of people seeking
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information appeared to be largely shaped by the
structure or architecture of the content—the in-
formation environment—and only minimally shaped
by the user’s knowledge of user interface. In addition,
the structure of the information environment was
fundamentally probabilistic. Consequently, behavior
was also dominated by choices made in the face of
uncertainty and the continual evalvation of the ex-
pected costs and benefits of various actions in the in-
formation environment, in contrast to the near-certain
costs and benefits of actions taken in traditional cog-
nitive modeling domains of the time.

It was clear that it was going to be a challenge to
develop theories for information-intensive tasks. Mul-
ling about this issue, I was drawn to work in two areas in
which I had done some reading. The first was the work
in the late 1980s of John R. Anderson (e.g., Anderson,
1990), who was putting forth the argument that to un-
derstand mechanisms of the mind, one must first try to
figure out the environmental problems that it solves.
John developed the method of rational analysis and
applied this approach to memory, categorization, and
other areas of cognition with considerable success. 1
wondered if the approach could be applied to the
analysis of the information environment and how it
shapes information seeking behavior.! The second area
of interest was behavioral ecology (e.g., Smith, 1987),
which suggested that very diverse strategies adopted by
people could be systematically predicted from optimi-
zation analysis that focused first on scrutiny of the en-
vironment. This particular interest of mine originated
as an undergraduate at Trent University, where phy-
siological psychology included coverage of ethology
(the precursor to behavioral ecology) and anthropology
included what is known as cultural materialism (the
precursor to current evolutionary-ecological approaches
to anthropology). Working through the literature in
these areas, I was led to optimal foraging theory, and
particularly to the book by Stephens and Krebs (1986)
that is the source of the conventional models discussed
in chapter Z. I quite literally had an “ah-ha” experience
in the middle of a late-night conversation with Jacqui
LeBlanc in which I 1aid out the basic analogies between
information foraging and optimal foraging theory.

In July 1992, T wrote a working paper titled “Notes
on Adaptive Sense Making in Information Ecolo-
gies,” which discussed the possible application of
conventional foraging models and the core mathe-
matics of Stephens and Krebs to idealized informa-
tion foraging tasks. The working paper got two kinds

of reactions. The first was one of disbelief in the
analogy, for a variety of relatively good reasons (e.g.,
humans are not rational, information is not food).
The second was that the ideas were “audacious” (to
quote Jock Mackinlay). Fortunately, Stu Card (my
manager and colleague in the User Interface Re-
search Area) pushed me to pursue this approach, and
he has been my main sounding board for the devel-
opment of the theory over the years. By the fall of
1993, T had enough material to present a seminar at
the University of California—Berkeley called “Sense
Making in Complex Information Ecologies.”

In the decade that followed, the fruitfulness of In-
formation Foraging Theory was apparent from the way
that it could be used to bring messy data into crystal
clear focus. The first time this happened was in ap-
plication to the Scatter/Gather study presented in
chapter 6. Simple analyses of the logs of users inter-
acting with the system seemed to indicate that users
where behaving in a nonsystematic way in their allo-
cation of time or in their choices of interface actions.
The application of optimal foraging models resulted
in another of those “ah-ha” experiences in which
suddenly the data plots all fell neatly on lines pre-
dicted by theory. Like catching a perfect wave in
surfing, the feeling one gets from that moment when
one gains power over a small portion of the universe is
hard to recount without the skill of poetry (which I do

not have), and it is the reward that keeps you coming
back.
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Information Foraging Theory

Framework and Method

Knowledge is power.
— Sir Francis Bacon,
Meditationes Sacre.

De Heeresibus (1597)

Modern mankind forages in a world awash in infor-
mation, of our own creation, that can be transformed
into knowledge that shapes and powers our engage-
ment with nature. This information environment has
coevolved with the epistemic drives and strategies
that are the essence of our adaptive toolkit. The result
of this coevolution is a staggering volume of content
that can be transmitted at the speed of light. This
wealth of information provides resources for adapting
to the problems posed by our increasingly complex
world. However, this information environment poses
it own complex problems that require adaptive
strategies for information foraging. This book is about
Information Foraging Theory, which aims to explain
and predict how people will best shape themselves for
their information environments and how information
envirgnments can best be shaped for people.

Information Foraging Theory is driven by three
maxims attributable in spirit, if not direct quotation,
to Allen Newell’s (1990) program of Unified Theories
of Cognition:!

1. Good science responds to real phenomena or real
problems, Human psychology has evolved as an
adaptation to the real world. Information forag-
ing theory is concerned with understanding rep-
resentative problems posed by the real-world
information environment and adaptive cogni-
tive solutions to those problems.

2. Good science makes a difference. Information
Foraging Theory is intended to provide the
basis for application to the design and evalu-
ation of new technologies for human interac-
tion with information, such as better ways to
forage for information on the World Wide
Web.

3. Good science is in the details. The aim is to
produce working formal models for the anal-
ysis and prediction of observable behavior.

Like much of Newell’s work, the superficial ele-
gance and simplicity of these maxims unfurls into
complex sets of entailments. In this book 1 argue
that the best approach to studying real information
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foraging problems is to adopt methodological adap-
tationism, which directs our scientific attention to the
ultimate forces driving adaptation and to the proxi-
mate psychological mechanisms that are marshaled
to produce adaptive solutions. Thus, the methodol-
ogy of Information Foraging Theory is more akin to
the methodology of biology than that of physics, in
contrast with the historical bulk of experimental psy-
chology. To some extent, this choice of methodology
is a consequence of the success with which Informa-
tion Foraging Theory has been able to draw upon
metaphors, models, and techniques from optimal
foraging theory in biology (Stephens & Krebs, 1986).
The concern with application (Newell & Card, 1985)
drives the theory to be relevant to technological de-
sign and evaluation, which requires that models be
truly predictive a priori (even if approximately so)
rather than a “good fit” explanation of the data a pos-
teriori, as is the case with many current psychological
models. Being concerned with the details drives the
theory to marshal a variety of concepts, tools, and
techniques that allow us to build quantitative, pre-
dictive models that span many levels of interrelated
phenomena and interrelated levels of explanation.
This includes the techniques of task analysis through
state-space and problem-space representations, ratio-
nal analysis and optimization analysis of adaptive
solutions, and production system models of the cog-
nitive systems that implement those adaptive sol-
utions.

Audience

The intent of this book is to provide a comprehensive
presentation of Information Foraging Theory, the
details of empirical investigations of its predictions,
and applications of the theory to the engineering and
design of user interfaces. This book aims primarily at
an interdisciplinary audience with backgrounds and
interests in the basic and applied science aspects of
cognitive science, computer science, and the infor-
mation and library sciences. The theory and method-
ology have been developed by drawing upon work
on the rational analysis of cognition, computational
cognitive modeling, behavioral ecology, and micro-
economics. The crucible of empirical research that
has shaped Information Foraging Theory has been
application problems in human-information inter-
action, which is emerging as a new branch in the

field traditionally known as human-computer inter-
action. Although the emphasis of this book is on the-
ory and research, the insights and results are intended
to be relevant to the practitioner interested in a deeper
understanding of information-seeking behavior and
guidance on new designs. Chapter 9 is devoted en-
tirely to practical applications of the theory.

By its nature, Information Foraging Theory in-
volves the use of technical material such as mathe-
matical models and computational models that may
not be familiar to a broad audience. Generally, the
technical aspects of the theory and models are pre-
sented along with succinct discussion of the key
concepts, insights, and principles that emerge from
the technical parts, along with illustrative examples,
metaphors, and graphical methods for understanding
the key points. The aim of this presentation is to pro-
vide intuitive understanding along with technical pre-
cision and insight.

Framewaorks, Theories, and Models

Like other programs of research in the behavioral and
cognitive sciences, Information Foraging Theory can
be discussed in terms of the underlying framework,
the theory itself, and the models that specify predic-
tions in specific situations. Frameworks are the gen-
eral pools of concepts, assumptions, claims, heuris-
tics, and so forth, that are drawn from to develop
theories, as well the methods for using them to un-
derstand and predict the world. Often, frameworks
will overlap. For instance, information processing
psychology is a broad framework that assumes that
theories about human behavior can be constructed
out of information processing concepts, such as pro-
cesses that transduce physical sensations into sensory
information, elements storing various kinds of infor-
mation, and computational processes operating over
those elements. A related framework, connectionism,
shares these assumptions but makes additional ones
about the nature of information processing being
neuronlike. Although bold claims may be made by
frameworks, these are typically not testable in and of
themselves. For instance, whether the mind is mostly
a general purpose learning machine or mostly a col-
lection of exquisitely evolved computational modules
are not testable claims in and of themselves.
Theories can be constructed within frameworks
by providing additional assumnptions that allow one to



make predictions that can be falsified. Typically, this is
achieved by specifying a model for a specific situation
or class of situations that makes precise predictions
that can be fit to observation and measurement. For
instance, a model of information seeking on the Web
(SNIF-ACT') is presented in chapter 5 that predicts
the observed choice of Web links in given tasks. It
includes theoretical specifications of the information
processing model of the user, as well as assumptions
about the conditions under which it applies (e.g.,
English-speaking adults seeking information about un-
familiar topics). The bulk of this book is about Infor-
mation Foraging Theory and specific models. The
aim of this introductory chapter is to provide an out-
line of the underlying framework and methodology
in which Information Foraging Theory is embedded.
However, before presenting such abstractions, a simple
example is offered in order to illustrate the basic ele-
ments and approach of Information Foraging Theory.

Illustration

The basic approach of Information Foraging Theory
can be illustrated with a simple example that I hope
is familiar to many, involving the task of finding a
good, reasonably priced hotel using the World Wide
Web (Pemberton, 2003). A typical hotel Web site
(see figure 1.1) will allow a user to search for avail-
able hotels in some specified location (e.g., “Paris”)
and then allows the user to sort the results by the
hotel star rating (an indicator of quality) or by price
(but not both). The user must then click-select each
result to read it, because often the price, location, and
features summaries are inaccurate. Lamenting the
often poor quality of such hotel Web sites, Pem-
berton (2003) suggested that improved “usability is
about optimizing the time you take to achieve your
purpose, how well you achieve it, and the satisfaction
in doing it....How fast can you find the perfect
hotel?” This notion of usability is at the core of In-
formation Foraging Theory.

For illustration, consider the somewhat simplified
and idealized task of finding a low-priced, two-star
hotel in Paris.* This example shows (in much sim-
plified form) the key steps to developing a model of
information foraging: (a) a rational analysis of the task
and information environment that draws on optimal
foraging theory from biology and (b) a production
system model of the cognitive structure of task.

FRAMEWORK AND METHOD 5

Rational Analysis of the Task
and Information Environment

Figure 1.2 presents an analysis of results of search for
two-star Paris hotels that I conducted on a popular
hotel Web site. The Paris hotel descriptions and
prices were returned as a vertical list presented over
several Web pages. [ sorted the list by star rating and
went to the page that began to list two-star hotels. In
figure 1.2, the x-axis indicates the order of two-star
hotel listings in the search result list when sorted
by star rating, beginning at the first two-star hotel
through the last two-star hotel, and the y-axis indi-
cates price. Prices fluctuate as one proceeds down the
list of Paris hotels. As noted above, this particular
hotel Web site, like many others, does not allow the
user to sort by both quality (star rating) and price—
one must choose one or the other sorting. Assume a
rational (and perhaps somewhat boring) hotel shop-
per who was concerned only with being frugal and
sleeping in a two-star hotel. If that shopper method-
ically scanned the two-star hotel listings, keeping
track of only the lowest priced hotel found so far, the
lowest price encountered would decrease as plotted
in figure 1.3. That is, the shopper would at first find a
relatively rapid decrease in lowest price, followed by
fewer improvements as the scan progressed. Figure
1.4 shows the savings attained (compared with the
very first hotel price found on the list) by continuing
to scan down the list. Figure 1.4 is a typical dimin-
ishing returns curve in which additional benefits
(returns) diminish as one invests more resources (in
this case, scan time).

A diminishing returns curve such as figure 1.4
implies that the expected value of continuing to scan
diminishes with each additional listing scanned. If
the list of search results were very long—as is often
the case with the results produced by Web search
engines—there is usually a point at which the infor-
mation forager faces the decision of whether it is
worth the effort of continuing to search for a better
result than anything encountered so far. In the par-
ticular example plotted in figure 1.2, there were no
additional savings for the last 18 items scanned.
Figure 1.3 includes a plot of the expected minimum
price encountered as a function of scanning a search
result list, and figure 1.4 includes a plot of the ex-
pected savings as a function of scanning. These ex-
pectations were computed assuming that observed
hotel prices in figure 1.2 come from a standard
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FIGURE 1.1 A typical Web page from a hotel search site.

distribution of commodity prices (see the appendix
for detaiis). Assuming that our hypothetical rational
hotel shopper valued time (time is money), the ques-
tion would be whether the savings expected tobe gained
by additional scanning of hotel results was worth the
time expected to be expended.

In contrast to this simple illustration, typical in-
formation problems solved on the Web are more

complicated (Morrison, Pirolli, & Card, 2001), and
the assessments of the utility of encountered items in
information foraging depend on more subtle cues than
just prices. However, the basic problem of judging
whether continued foraging will be useful or a waste
of valuable time is surely familiar to Web users. It
turns out that this problem is very similar to one class
of problems dealt with in optimal foraging theory.
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FIGURE 1.2 Prices of two-star Paris hotels in the
order encountered in the results of a search of a hotel
Web site.

—— Obsened Minimum Price
------- Expected Minimum Price
Obsened Price
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FIGURE 1.3 The minimum two-star Paris hotel price
as a function of order of encounter. The observed
prices are the same as those in figure 1.2. The observed
minimum is the least expensive hotel price found so
far in a process that proceeds through the prices in the
order listed. The expected minimum is a prediction
based on the assumption that prices are being sequen-
tially and randomly sampled from a fixed distribution
of prices (see the appendix for details).

FRAMEWORK AND METHOD 7

—— Obsened Savings
------- Expected Savings

1 5 10 156 20 25 30 35 40

List Order

FIGURE 1.4 Diminishing returns of savings as a func-
tion of list order. The observed savings is the differ-
ence between the observed minimum price found so
far and the first price encountered ($110), presented
in figure 1.3. The expected savings is the difference
between the expected minimum price and first price
encountered.

An Optimal Foraging Analogy

Many animals forage in patchy environments, with
food arranged into clumps. For instance, a bird that
feeds on berries in bushes will spend part of its time
searching for the next bush and part of its time berry
picking after having found a bush. Often, as an ani-
mal forages in a patch, it becomes harder to find food
items. In other words, foraging within a food patch
often exhibits a diminishing returns curve similar to
the one in figure 1.5. Such diminishing returns may
occur, for instance, because prey actively avoid the
forager as they become aware of the threat of preda-
tion. Diminishing returns may also occur because the
forager has a strategy of picking off the more highly
profitable items first (e.g., bigger berries for the hy-
pothetical bird) from a patch with finite resources.
Like the hypothetical Web shopper discussed above,
the problem for a food forager facing diminishing
returns in a patch is whether to continue investing
efforts in getting more out of the patch, or to go look
for another patch.

Figure 1.5 is a graphical version of a simple con-
ventional patch model (Stephens & Krebs, 1986) based
on Charnov's Marginal Value Theorem (Charnov,
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Gain
(energy)
A

altw)

»

Time

t5 tw

FIGURE 1.5 Chamnov’s Marginal Value Theorem
states that the rate-maximizing time to spend in
patch, t* occurs when the slope of the within-patch
gain function g is equal to the average rate of gain,
which is the slope of the tangent line R*.

1976). The model depicted in figure 1.5 assumes that
an animal foraging for food encounters only one kind
of food patch at random that is never reencountered.
When searching for the next food patch, it takes
an average of tg amount of time to find the next
patch (between-patch time). Once a patch is en-
countered, foraging within the patch returns some
amount of energy (e.g., as measured by calories) that
increases as a function, g, of the time, tw, spent for-
aging within the patch. Figure 1.5 shows a diminish-
ing returns function, g, for within-patch foraging. The
problem for the forager is how much time, tw, to
spend within each patch before leaving to find the
next patch.

The conventional patch model assumes that the
animal forager optimizes the overall rate of gain, R,
that characterizes the amount of energy gained per
unit time of foraging:

gltw)

tg +tw’ (-
or the amount of energy (calories) gained from an
average patch divided by the time spent traveling
from one patch to the next (tg) plus the time spent
foraging within a patch (tw). The optimal amount of
time, t*, to spend in a patch is the one that yields the
maximum rate of gain, R*,

(1.2)

Charnov's Marginal Value Theorem (Charnov,
1976) is a mathematical solution to this problem of
determining *. It basically says that a forager should
leave a patch when the rate of gain within the patch
[as measured by the slope of g(tw) or more specifi-
cally the derivative g'(tw)] drops below the rate of
gain that could be achieved by traveling to, and for-
aging in, a new patch. That is, the optimal forager
obeys the rule,

it g'(tw)>R"*, then continue foraging in the
patch; otherwise,

when g'(tw)<R*, then start looking for a new
patch.

Charnov’s Marginal Value Theorem can be illus-
trated graphically in figure 1.5 for this simple prob-
lem (one kind of patch, randomly distributed in the
world). First, note that the gain function g begins to
climb only after ¢g, which captures the fact that it
takes tp time to go from the last patch to a new patch.
If we draw a line beginning at the origin to any point
on the gain function, g, then the slope of that line
will be the overall rate of gain R, as specified in
equation 1.1. Figure 1.5 shows such a line drawn
from the origin to a point just tangent to the function
g. The slope of this line is the optimal rate of gain R*
as computed in equation 1.2. This can be verified
graphically by imagining other lines drawn from the
origin to points on the function g. None of those lines
will have a steeper slope than the line plotted in
figure 1.5. The point at which the line is tangent to g
will be the point at which the rate of gain, g'(tw)
within the patch is equal to R*. This point also de-
termines t*, the optimum time to spend within the
average patch.

Production System Models

The rational analyses in Information Foraging The-
ory, which often draw from optimal foraging theory,
are used to inform the development of production
system models. These rational analyses make mini-
mal assumptions about the capabilities of foragers.
Herbert Stmon {1955) argued that organisms are not
optimal, rational agents having perfect information
and unlimited computational resources. Rather, or-
ganisms exhibit bounded rationality. That is, agents
are rational and adaptive, within the constraints of
the environment and the psychological machinery



available to them biologically. Production system
models provide a way of specifying the mechanistic
structures and processes that implement bounded
rationality. On the one hand, production systems have
been used in psychology as a particular kind of com-
puter simulation formalism for specifying the infor-
mation processing that theorists believe people are
performing. On the other hand, production systems
have evolved into something more than just a class of
computer simulation languages: They have become
theories about the basic information processing ar-
chitecture of cognition that is implemented in human
brains (Anderson, 1983; Anderson & Lebiere, 1998;
Newell, 1990).

In general, as used in psychology,’ production
systems are composed of a set of production rules that
specify the dynamics of information processing per-
formed by cognition (how we think). Production rules
operate over memories (or databases) that contain sym-
bolic structures that represent aspects of the external
environment and internal thought (what we think
about). The system operates in a cyclical fashion in
which production rules are selected based on the
contents of the data memories and then executed.
The execution of a production rule typically results
in some change to the memories.

The production system models presented in this
book are extensions of ACT theory (Anderson et al.,
2004; Anderson & Lebiere, 1998). ACT (Adaptive
Control of Thought) theory assumes that there are
two kinds of knowledge, declarative and procedural
(Ryle, 1949). Declarative knowledge is the kind of
knowledge that a person can attend to, reflect upon,
and usually articulate in some way (e.g., by declaring
it verbally or by gesture). Declarative knowledge in-
cludes the kinds of factual knowledge that users can
verbalize, such as “The ‘open’ item on the ‘file’ menu
will open a file.” Procedural knowledge is the know-
how we display in our behavior, without conscious
awareness. For instance, knowledge of how to ride a
bike and knowledge of how to point a mouse to a
menu item are examples of procedural knowl-
edge. Procedural knowledge specifies how declarative
knowledge is transformed into active behavior.

ACT-R (the most recent of the ACT theories) has
a memory for each kind of knowledge (ie., a de-
clarative memory and a procedural memory) plus a
special goal memory. At any point in time, there may
be a number of goals in goal memory, but the system
behavior is focused to achieve just one goal at a time.
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Complex arrangements of goals and subgoals (e.g.,
for developing and executing plans to find and use
information) can be implemented by manipulating
goals in goal memory.

Production rules (or productions) are used to
represent procedural knowledge in ACT-R. That is,
they specify how to apply cognitive skill (know-how)
and how to retrieve and use declarative knowledge.
Table 1.1 presents an example of a production sys-
tem for the task of finding a low-cost hotel using a
Web site. The example in table 1.1 is not intended
to be a psychologically plausible model, but rather it
illustrates key aspects of production system mod-
els and how they are used in this book. The pro-
ductions in table 1.1 are English glosses of produc-
tions written in ACT-R 5.0, which is discussed in
greater detail below.* Each production rule is of the
form

IF (condition), THEN (actions).

The condition of a rule specifies a pattern. When
the contents of declarative working memory match the
pattern, the rule may be selected for application. The
actions of the rule specify additions and deletions of
content in declarative working memory, as well as
motor commands. These actions are executed if the
rule is selected to apply. In ACT-R, each production
rule has conditions that specify which goal informa-
tion must be matched and which declarative memory
must be retrieved. Each production rule has actions
that specify behavioral actions and possibly the set-
ting of subgoals. Typically, ACT-R goal memory is
operated on as what is known in computer science as
a push-down stack: a kind of memory in which the
last item stored will be the first item retrieved. Hence,
storing a new goal is referred to as “pushing a goal on
the stack,” and retrieval is referred to as “popping a
goal from the stack.”

The production rules in table 1.1 assume that
declarative memory contains knowledge encoded
from the external world about the location and con-
tent of links on a Web page. The productions also
assurmne that an initial goal is set to find a hotel price,
and the productions accomplish the task by “scan-
ning” through the links keeping track of the lowest
price found so far. This involves setting a subgoal to
judge the minimum of the current best price and the
price just attended when each link is scanned. Table
1.2 presents a trace of the productions in table 1.1



