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PREFACE

Knowledge of structural stability theory is of paramount importance to the
practicing structural engineer. In many instances, buckling is the primary
consideration in the design of various structural configurations. Because of
this, formal courses in this important branch of mechanics are available to
students in Aerospace Engineering, Civil Engineering, Engineering Science
and Mechanics, and Mechanical Engineering at many institutions of higher
learning. This book is intended to serve as a text in such courses. The empha-
sis of the book is on the fundamental concepts and on the methodology
developed through the years to solve structural stability problems.

The material contained in this text is ideally suited for a one-semester
Master’s level course, although with judicious addition or deletion of topics,
the text may be adopted for both a two-quarter series or a one-quarter course.

The first chapter introduces the basic concepts of elastic stability and the
approaches used in solving stability problems, it also discusses the different
buckling phenomena that have been observed in nature. In Chapter 2, the
basic concepts and methodology are applied to some simple mechanical
models with finite degrees of freedom. This is done to help the student under-
stand the fundamentals without getting involved with lengthy and com-
plicated mathematical operations, which is usually the case when dealing
with the continuum (infinitely many degrees of freedom). In Chapter 3, a
complete treatment of the elastic stability of columns is presented, including
effects of elastic restraints. Some simple frame problems are discussed in
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xii Preface

Chapter 4. This chapter is of special importance to the Civil Engineering
student. Since energy-based methods have been successfully used in structural
mechanics, Chapter 5 presents a comprehensive treatment of the energy
criterion for stability and contains many energy-related methods. The study
of this chapter requires some knowledge of work- and energy-related princi-
ples and theorems. These topics are presented in the Appendix for the benefit
of the student who never had a formal course in this area. Columns on elastic
foundations are discussed in Chapter 6. Chapter 7 presents a comprehensive
treatment of the buckling of thin rings and high and low arches. In this
chapter, a complete analysis is given for a shallow, pinned, sinusoidal arch
on an elastic foundation subject to a sinusoidal transverse loading. This is an
interesting model for stability studies because, depending upon the values of
the different parameters involved, it exhibits all types of buckling that have
been observed in different structural systems: top-of-the-knee buckling,
stable bifurcation (Euler-type), and unstable bifurcation. Finally, Chapter 8
contains some remarks about stability of nonconservative elastic systems and
dynamic stability. The purpose of this chapter is to motivate the student for
further studies by using the references cited.

Once the student has been exposed to the contents of this text, he may,
depending upon his interest, proceed with the study of the stability analysis
of other structural configurations such as plates, shells, and torsional and
lateral buckling of thin-walled open-section beams.

Numerous references are listed at the end of each chapter. These refer-
ences provide an excellent source for further studies, for better understanding
of certain specific concepts, and for detailed information about specific ap-
plications.

The author is indebted to the late Professor J. N. Goodier whose two-
course series at Stanford University provided the basis for the organization
of the material in the present text. The encouragement and valuable sugges-
tions of Professor N. J. Hoff are greatly appreciated. Special thanks are due
to Professor M. E. Raville for providing tangible and intangible support,
reading the manuscript, and making many corrections. The numerous dis-
cussions with Professors S. Atluri, W. W. King, G. M. Rentzepis, C. V.
Smith, Jr., and M. Stallybrass are gratefully acknowledged. The proofreading
was done by many of my students, but special thanks are due particularly to
Dr. V. Ungbhakorn and Mr. J. Giri. Mr. Giri also made most of the draw-
ings. Mrs. Ruth Salley and Mrs. Jackie Van Hook worked with great dedica-
tion in typing the manuscript.

G.J.S.
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1

INTRODUCTION
AND FUNDAMENTALS

1.1 MOTIVATION

Many problems are associated with the design of modern structural systems.
Economic factors, availability and properties of materials, interaction be-
tween the external loads (aerodynamic) and the response of the structure,
dynamic and temperature effects, performance, cost, and ease of main-
tenance of the system are all problems which are closely associated with the
synthesis of these large and complicated structures. Synthesis is the branch
of engineering which deals with the design of a system for a given mission.
Synthesis requires the most efficient manner of designing a system (i.e., most
economical, most reliable, lightest, best, and most easily maintained system),
and this leads to optimization. An important part of system optimization is
structural optimization, which is based on the assumption that certain para-
meters affecting the system optimization are given (i.e., overall size and shape,
performance, nonstructural weight, etc.) It can only be achieved through good
theoretical analyses supported by well-planned and well-executed experimen-
tal investigations.

Structural analysis is that branch of structural mechanics which associ-
ates the behavior of a structure or structural elements with the action of
external causes. Two important questions are usually asked in analyzing a
structure: (1) What is the response of the structure when subjected to external
causes (loads and temperature changes)? In other words, if the external
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2 Introduction and Fundamentals | Ch. 1

causes are known, can we find the deformation patterns and the internal
load distribution? (2) What is the character of the response? Here we are
interested in knowing if the equilibrium is stable or if the motion is limited
(in the case of dynamic causes). For example, if a load is periodically applied,
will the structure oscillate within certain bounds or will it tend to move with-
out bounds?

If the dynamic effects are negligibly small, in which case the loads are said
to be applied quasistatically, then the study falls in the domain of structural
statics. On the other hand, if the dynamic effects are not negligible, we are
dealing with structural dynamics.

The branch of structural statics that deals with the character of the res-
ponse is called stability or instability of structures. The interest here lies in
the fact that stability criteria are often associated directly with the load-
carrying capability of the structure. For example, in some cases instability
is not directly associated with the failure of the overall system, i.e., if the skin
wrinkles, this does not mean that the entire fuselage or wing will fail. In other
cases though, if the portion of the fuselage between two adjacent rings be-
comes unstable, the entire fuselage will fail catastrophically. Thus, stability
of structures or structural elements is an important phase of structural anal-
ysis, and consequently it affects structural synthesis and optimization.

1.2 STABILITY OR INSTABILITY OF STRUCTURES

There are many ways a structure or a structural element can become unstable,
depending on the structural geometry and the load characteristics. The spatial
geometry, the material along with its distribution and properties, the character
of the connections (riveted joints, welded, etc.), and the supports comprise
the structural geometry. By load characteristics we mean spatial distribution
of the load, load behavior (whether or not the load is affected by the deforma-
tion of the structure, e.g., if a ring is subjected to uniform radial pressure,
does the load remain parallel to its initial direction, does it remain normal to
the deformed ring, or does it remain directed towards the initial center of
curvature ?), and/or whether the force system is conservative.

1.2.1 Conservative Force Field

A mechanical system is conservative if subjected to conservative forces.
If the mechanical system is rigid, there are only external forces; if the system
is deformable, the forces may be both external and internal. Regardless of the
composition, a system is conservative if all the forces are conservative. A force
acting on a mass particle is said to be conservative if the work done by the
force in displacing the particle from position 1 to position 2 is independent of
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the path. In such a case, the force may be derived from a potential. A ri-
gorous mathematical treatment is given below for the interested student.

The work done by a force F acting on a mass particle in moving the par-
ticle from position P, (at time #,) to position P, (at time #,) is given by

W= jEA F-dr (1)
C¥vYro
Thus the integral, W (a scalar), depends on the initial position, 7o, the

final position, ?,, and the path C. If a knowledge of the path C is not needed
and the work is a function of the initial and final positions only, then

W =W(ro 11, F) @)
and the force field is called conservative. (See Refs. 1-3.)

Parenthesis. If S denotes some surface in the space and C some space
curve, then by Stokes’ theorem

C§ U-dl = ([ curl U-n ds 3)

where 7 is a unit vector normal to the surface S (see Fig. 1-1).
If § U-dl = 0, then
C

_” curl U-nds =0 4
S

S i

)

Figure 1-1. “S”
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for all surfaces S and spanning curves C. If this is so, then the curl of U (some
vector quantity) must be identically equal to zero, or

curl U =0 &)

Next, if we apply this result to a conservative force field where Uis replaced
by F, then according to the previous result

curl F =0

It is well known from vector analysis that the curl of the gradient of any
scalar function vanishes identically. Therefore, for a conservative field we
may write

F=—-wv (6)
where:

1. The negative sign is arbitrary,
2. Vis some scalar function, and
3. V is the vector operator

93 d-‘ Jdz

ax’ i 0y (92

where 7, 7, k form an orthogonal unit vector triad along x, y, z, respectively.

This implies that the force can be derived from a potential.
Note that in this case the work done by the force in a conservative force
field is given by

W= § = —f VV.dr = —§ (V-drV

and since

v=27+05 9% and aF = @0)i +@)j + @)k

ax' Ty
then
(V-dr)V = d X+ “;Vd n ‘;Vd —av
or
W=—("av=v,—v,= —s) %)

Vo

where  denotes a change in the potential of the conservative force F from
position r, to position r,.
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Thus a system is conservative if the work done by the forces in displacing
the system from deformation state 1 to deformation state 2 is independent
of the path. If this is the case, the force can be derived from a potential.

There are many instances where systems are subjected to loads which
cannot be derived from a potential. For instance, consider a column clamped
at one end and subjected to an axial load at the other, the direction of which
is tangential to the free end at all times (follower force). Such a system is
nonconservative and can easily be deduced if we consider two or more pos-
sible paths that the load can follow in order to reach a final position. In each
case the work done will be different. Systems subject to time-dependent
loads are also nonconservative. Nonconservative systems have been given
special consideration (Refs. 4 and 5), and the emphasis in this text will be
placed on conservative systems (see Ref. 6 for a detailed description of forces
and systems).

1.2.2 The Concept of Stability

As the external causes are applied quasistatically, the elastic structure
deforms and static equilibrium is maintained. If now at any level of the
external causes “small” external disturbances are applied and the structure
reacts by simply performing oscillations about the deformed equilibrium
state, the equilibrium is said to be stable. The disturbances can be in the form
of deformations or velocities, and by “small” we mean as small as desired.
As a result of this latter definition, it would be more appropriate to say that
the equilibrium is stable in the small. In addition, when the disturbances are
applied, the level of the external causes is kept constant. On the other hand,
if the elastic structure either tends to and does remain in the disturbed position
or tends to and/or diverges from the deformed equilibrium state, the equlib-
rium is said to be unstable. Some authors prefer to distinguish these two con-
ditions and call the equilibrium neutral for the former case and unstable for
the latter. When either of these two cases occurs, the level of the external
causes is called critical.

This can best be demonstrated by the system shown in Fig. 1-2. This sys-
tem consists of a ball of weight W resting at different points on a surface with
zero curvature normal to the plane of the figure. Points of zero slope on the

(@)
A + c
g

Figure 1-2. Character of static equilibrium positions.
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surface denote positions of static equilibrium (points 4, B, and C). Further-
more, the character of equilibrium at these points is substantially different.
At A, if the system is disturbed through infinitesimal disturbances (small
displacements or small velocities), it will simply oscillate about the static
equilibrium position 4. Such equilibrium position is called stable in the small.
At point B, if the system is disturbed, it will tend to move away from the
static equilibrium position B. Such an equilibrium position is called unstable
in the small. Finally, at point C, if the system is disturbed, it will tend to re-
main in the disturbed position. Such an equilibrium position is called
neutrally stable or indifferent in the small. The expression “in the small” is
used because the definition depends on the small size of the perturbations.
If the disturbances are allowed to be of finite magnitude, then it is possible
for a system to be unstable in the small but stable in the large (point B, Fig.
1-3a) or stable in the small but unstable in the large (point 4, Fig. 1-3b).

In most structures or structural elements, loss of stability is associated
with the tendency of the configuration to pass from one deformation pattern
to another. For instance, a long, slender column loaded axially, at the critical
condition, passes from the straight configurations (pure compression) to the
combined compression and bending state. Similarly, a perfect, complete,
thin, spherical shell under external hydrostatic pressure, at the critical con-
dition, passes from a pure membrane state (uniform radial displacement only;
shell stretching) to a combined stretching and bending state (nonuniform
radial displacements). This characteristic has been recognized for many years
and it was first used to solve stability problems of elastic structures. It allows
the analyst to reduce the problem to an eigenvalue problem, and many names
have been given to this approach: the classical method, the bifurcation method,
the equilibrium method, and the static method.

0y

(a) (b)
Figure 1-3. Character of static equilibrium positions in the large.
1.2-3 Critical Loads Versus Buckling Load

At this point nomenclature merits some attention. There is a definite
difference in principle between the buckling load observed in a loading pro-



