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Traces of Hecke operators

1. Introduction

A modular form of level 1 and weight k is a holomorphic function h(z)
on the complex upper half-plane H which satisfies

ML) = ez + d*h(2)

for all <Z Z) € SL2(Z). Taking (a 2) = <(1) i) gives in particular

h(z+1) = h(2).

Therefore h defines a holomorphic function of q = €™ The mapping
z — q takes H onto the open unit disk with the origin removed. The
origin corresponds to the cusp z = ico. Modular forms are required to
be holomorphic at the cusps, i.e. as a function of g, h has a power series
expansion

h(z) = Z anq”.
n=0

If ap = 0, then h is a cusp form. The Fourier coefficients an of modu-
lar forms contain a great deal of arithmetic information. For instance the
following quantities are encoded in the Fourier coefficients of appropriately
chosen modular forms:

e The number of ways of representing an integer by a given quadratic
form, e.g. as a sum of four squares ([Iw1], Ch. 10, 11.)

e The number of points on a Q-rational elliptic curve over the field
with p elements. (See the survey [Dal).)

One way to access the Fourier coefficients is as follows. For each prime
number p (not dividing the level N) there is a linear Hecke operator T,
acting on the vector space of cusp forms of a given level and weight. 1,
is diagonalizable, and its eigenvalues are the p'? Fourier coefficients of the
elements of a certain basis of eigenvectors. There is a well-known formula
for the trace of T}, from which these Fourier coefficients can be recovered.
This formula was originally given in the level 1 case by Selberg without
proof in his pioneering 1956 paper [S] on the trace formula for SL2(R).
Subsequent improvements were made by various authors, notably Eichler
(E], who developed a different technique allowing k = 2 and square-free

1



2 TRACES OF HECKE OPERATORS

level, and Hijikata [H], who gave the trace of T, with no restriction on the
level N, for (n, N) = 1. Hijikata’s computation builds on work of Shimizu
([Sh], which applies Selberg’s ideas to the Hilbert modular setting) and
Saito ([Sa], which generalizes Eichler’s work). The most general formula
for the trace of T, on Skx(N,w), valid for all n and N, was given in 1977
by Oesterlé in his thesis ([Oe]; see [Coh] for a description). This explicit
formula is known as the Eichler-Selberg trace formula. A statement of
the formula is given on page 370.

The first goal of these notes is to provide a reference with a comprehen-
sive self-contained proof of this fundamental formula, using the more modern
methods provided by the Arthur-Selberg trace formula for the adelic group
GL2(A). We evaluate the trace formula using a function f : GLy(A) — C
which is constructed from double cosets at the finite places in the same way
as the classical Hecke operator T,, and whose infinite component f., is a
matrix coefficient for the weight k discrete series representation of GLo(R).
Because this matrix coefficient is not integrable when k = 2, we need to
require k > 2. We also assume (n, N) = 1.

This technique is basic in the theory of automorphic forms. For example,
it is used in Langlands’ general strategy for computing the Hasse-Weil zeta
function of a Shimura variety in terms of automorphic L-functions. Roughly,
an analytic expression coming from the trace formula for a function like our
f (which can be evaluated in terms of automorphic L-factors) is compared
with a geometric expression involving the traces of Frobenius elements acting
on the cohomology of the variety (in terms of which the zeta function can
be evaluated). See [L1], [L2] and [Ro2].

In Sections 3 through 11 we have attempted to assemble the necessary
background from representation theory and number theory in one place for
anyone who wishes to understand the whole story without having to jump
between too many sources. This includes detailed treatments of modular
forms and Hecke operators, adeles and ideles, structure theory and strong
approximation for GL(2), integration theory, Poisson summation for func-
tions on the adeles, adelic zeta functions, representation theory for locally
compact groups, and the unitary representations of GL2(R).

The heart of the text begins in Section 12 where we give a thorough
account of the passage from the classical setting to the adelic one. In the
sections that follow, we essentially reprove the convergence of the truncated
terms on the geometric side of the trace formula for GL(2). This discussion
is quite general and overlaps significantly with the articles [G2] and [GJ],
however we have tried to include more detail than these sources, particularly
on convergence issues. Some extra care is required since our test function is
not compactly supported.

Lastly, we hope that the explicit computations of orbital integrals for
GL(2) over R and p-adic fields in Sections 24-26 will be interesting for any-
one studying the trace formula or local harmonic analysis. We will not
discuss zeta functions further (and indeed the most natural application in
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this direction would be to compute the zeta functions of modular curves,
which would require the k = 2 case), but we include some more modest
applications and examples in the last chapter. These include the dimension
formula for Sik(N,w’), the integrality of Hecke eigenvalues, and the asymp-
totic equidistribution of eigenvalues of T}, as k + N — oc.

Other references for the traces of Hecke operators include Duflo and
Labesse [DL], who used the trace formula for GLa(A) to sketch a derivation
of the formula for the traces of Hecke operators. Miyake’s book [Mi] contains
a proof (for k > 2) using the trace formula for SLy(R). Miyake’s exposition
is based on [Sh| and [H], and includes the case of cusp forms attached to
the unit groups of indefinite quaternion algebras due to Hijikata. Zagier
gave a proof for level 1 and weight k > 3 (also using the classical language)
in [Z1] and [Z2]. In [Oe], Oesterlé removed the condition (n, N) = 1, and
allowed for half-integer weights by building on work of Shimura. We adopt
Oesterlé’s notation for the final form of the trace formula.

Acknowledgements. We would like to thank J. Rogawski for his en-
couragement and helpful advice, without which these notes could not have
been written. We also thank the anonymous referees for their detailed com-
ments. This work was supported in part by NSA grants H98230-05-1-0028
and H98230-06-1-0039. The second author thanks the UCLA math depart-
ment for support when most of this work was done, as well as the Taiwan
National Center for Theoretical Sciences which provided travel support for
a visit to Maine.

2. The Arthur-Selberg trace formula for GL(2)

We begin with a review of the trace formula for GL(2) for a compactly
supported function. Although we will not use it explicitly, this formula
provides the framework for the trace formula derived in these notes. Nearly
all of the definitions and concepts which are mentioned briefly in this section
will be discussed in greater detail later on. A good introduction to the trace
formula is given in Lecture 1 of Gelbart’s book [G2].

Let A be the adele ring of Q, and let A* be the idele group (see Section
5.2 below for definitions and topology).

Let G be the group GLy. Thus for any ring R (we always assume rings
are commutative with 1), G(R) is the group of 2 x 2 invertible matrices with
entries in R. We use this notation for any linear group. For example let
B C G denote the Borel subgroup of invertible upper triangular matrices.
Then B(R) = M(R)N(R) where M(R) is the group of diagonal matrices
with invertible entries in R, and N(R) is the group of unipotent matrices
(é i) for t € R. The Iwasawa decomposition of Gp = G(Qp) (or
G =G(R)) is

Gp = BpK, (or Goo = BooKoo),
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where K, = GL2(Z,) is the standard maximal compact subgroup of G(Q,),
and Ko = SO(2). See Proposition 6.3. Setting K = [[,<., Kp, we also
have
G(A) = B(A)K.

Identifying Q with its diagonal image in A, we view G(Q) as a subgroup of
G(A).

The center of G is denoted by Z and consists of the scalar matrices. Let

G = 2Z\G.

More generally for any subset S C G we let S denote the image of S under
the map G — G.

A Hecke character is a continuous multiplicative homomorphism from
A* to C* which is trivial on Q*. Let w : Q*\A* — C* be a unitary Hecke
character (i.e. |w(z)| =1 for all z € A*). Because Z(A) = A*, we can view
w as a character of Z(A). We adopt the following convention throughout
this text:

** All Hecke characters are assumed to be unitary **

Define
L*(w) = L*(G(Q)\G(A),w) =
(i) ¢ is measurable
6: GQ\G(A) = C| (i) (29) = w(2)6(g) for all 2 € Z(A)

(111) f“G‘(Q)\ﬁ(A) I¢(g)l2dg < o0
where dg is any right G(A)-invariant measure on G(Q)\G(A). As usual two
such functions are equivalent if they agree up to a set of measure zero. An
important subspace of L?(w) is the set of cuspidal functions, defined as
follows:

Li(w) = {¢ € L(w)| / ¢(ng)dn =0 for a.e. g € G(A)} ,
N(Q)\N(A)

where as before N is the subgroup of unipotent elements in G. The integral
of ¢(ng) over N(Q)\N(A) is called the constant term of ¢. This is directly
related to the constant term of a classical modular form at a cusp (compare
(3.21) and (12.15)).

Let R denote the right regular representation of G(A) on L?(w):

R(z)d(g) = ¢(g).
This is an infinite-dimensional representation of G(A). Because G(Q)\G(A)
is noncompact, R does not decompose into a direct sum of irreducible rep-
resentations.” However, it is easy to check that L%(w) is stable under this
action, and we set Ry = R} [2(w)- This representation Ry does split into an

fSee [GGPS] Chapter 1 §2.3 for a proof of complete reducibility in the compact quotient
case.
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orthogonal Hilbert space direct sum of countably many irreducible repre-
sentations ([GGPS], Chapter 3 §4.6):

Li(w) = @ﬂ'.

(Here @ denotes an orthogonal Hilbert space direct sum, i.e. the closure
of the usual algebraic direct sum.) See also Chapter 3 of [Bu], or [Kn1].
An irreducible representation of G(A) with central character w is cuspidal
if it occurs in this decomposition. Jacquet and Langlands proved that the
multiplicity of each cuspidal representation in the above sum is one (cf. [JL],
[PS], or Chapter 3 of [Bu).

Let C.(G(A),w™) be the space of continuous functions f : G(A) - C
with compact support modulo Z(A) satisfying f(zg9) = w(2)"*f(g). Then
we define an operator R(f) on L?(w) by

R(f)p(g) = /@ [ @l

for f € Ce(G(A),w™) and ¢ € L?(w). In general, R(f) is an infinite
rank operator and not of trace class. However its restriction Ry (f) to the
subspace of cuspidal functions is of trace class, so tr Ro(f) is meaningful
([GJ] Corollary 2.4 and [Kn1] Corollary 6.3).

The proof of the theorem below can be found in [G2] and [GJ], which
specialize Arthur’s formula for a general reductive group ([Ar1],[Ar4]) to
the case GL(2). The statement is from [GJ], Theorem 6.33. See also Theo-
rem 7.14 in the survey [Knl]. Haar measures will be fixed in Section 7.

THEOREM 2.1 (Arthur-Selberg Trace Formula for GLy). For
feC(GA),w™),
tr Ro(f) =

(2.1) meas(G(Q)\G(A))f(1)

(2.2) + > [ flg7'vg)dg
[v]CcG(Q) elliptic Cr(QNE(A)

(23)  —5meas(Q\AY) [ fa e
1veRr(@) " M ANGA)
(2.4) +f~_101-ZF(s)
(2.5) +Zl7; Z /00 tr(M (—it) M’ (it)p(x, it)(f))dt
x=(x12c3) 8

(26) — 3 (MO0, 0)(£)
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(2.7) -y /G x(det(g))dg.

s, /e

The terms (2.1)-(2.4) constitute the geometric side of the trace formula,
and consist of orbital integrals or weighted orbital integrals over the con-
jugacy classes in G(Q). The remaining terms form the spectral side of the
trace formula. We now give a brief elaboration of each geometric term:

. 10
(2.1) This is the identity term coming from the conjugacy class { (0 1) }.

(2.2) Elliptic terms: v € G(Q) is elliptic when it is not conjugate to an
upper triangular matrix (over Q), or equivalently, when the eigenvalues of
7 lie outside Q. For any element v € G(Q), [] is the G(Q)-conjugacy class
of v, and G+(Q) is the centralizer of v in G(Q). The sum is taken over all
elliptic conjugacy classes in G(Q).

(2.3) Hyperbolic terms: An element of G(Q) is hyperbolic if it is con-
jugate to a nonscalar diagonal matrix in G(Q). The sum is taken over all
hyperbolic conjugacy classes in G(Q). Note that G,(A) = M(A) when v
is diagonal. The weight function v is defined by v(g) = H(g) + H(wg),

where w = <_01 é), and H is the height function defined in Section 7.

(2.4) Unipotent term: Here

:/Kf(k‘l (é ‘f) k)dk,

and f.p.Zp(s) denotes the “finite part” at s = 1 (i.e. the constant term of
s=1

the Laurent expansion about s = 1) of the meromorphic zeta-function

Zi(s) :/ Fa)[al*d"a
defined by Tate.

The remaining terms (2.5)-(2.7) are the noncuspidal spectral terms.
These terms do not contribute to the traces of Hecke operators on holo-
morphic cusp forms.

(2.5) Continuous terms: This is the contribution of the continuous ker-
nel. We follow [G2] for the notation. The summation is over pairs of Hecke
characters (x1, x2) such that x1x2 = w, and p(x, s) denotes the induced rep-

G(A) (x1() ) € B(A).

. S .
resentation space Ind B(A) e @ |%' A), where we write b = 0 d

(For the definition of this induced representation, see page 390 of [Kn1],
or [GJ] §4A.) Letting x* = (x2,x1), M(s) = M(s,x) is the intertwining
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operator from p(x,s) to p(x*, —s) defined by

o M(s)p(g) = /N 1, PLms)n

M (s) is initially defined only for Re(s) > 1/2, but it continues meromorphi-
cally to C, and holomorphically on iR (cf. [GJ], §4).

Lastly M'(s) is the derivative £M(s,x) : p(x,s) — p(x*,—s). As
stated this definition does not quite make sense because the two representa-
tions have different underlying spaces. However, we identify the underlying
space of p(x,0) with that of p(x, s) by ¢(g) — e*H9p(g) (cf. [G2], p. 35).

(2.6) and (2.7) Residue part: These terms come from residues of Eisenstein
series. Here the sums are taken over all pairs (x,x) where y is a Hecke
character satisfying 2 = w.

3. Cusp forms and Hecke operators

In this section we give a survey of modular forms and Hecke operators
on I'g(NN). Our goal is to define the Hecke operator T, and establish some of
its basic properties. For a more general discussion, see e.g. [Mi] or [Shim)].

3.1. Congruence subgroups of SLy(Z). For any ring R let My(R)
be the ring of 2 x 2 matrices with entries in R, and let SLs (R) be the group
of 2 x 2 matrices with determinant 1.

LEMMA 3.1. For any integer N > 1, the map
SL2(Z) — SL2(Z/NZ)

18 surjective.

PROOF. Let g € SLy(Z/NZ). Choose a matrix Z € M3(Z) which
reduces to g modulo N, and for which d # 0. Clearly
(3.1) ged(e,d, N) = 1.
We claim that for some s € Z, ¢ + sN is relatively prime to d. To see this,
let p1,...,p, be the prime factors of d. For each such prime, consider the
congruence

¢+ z; N = 0 mod p;.
If p;|N, then p; { ¢ by (3.1), so there is no solution xj. If p; { N, then there
is a unique solution z; modp;. By the Chinese remainder theorem, there
exists s € Z such that

s = (z; — 1) modp;
for all such p; { N. Then ¢ + sN # 0 modp for all pld, so ¢ + sN is
relatively prime to d as claimed. Replacing ¢ by ¢+ sN, we can assume that
ged(e,d) = 1.



