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PREFACE

All electromagnetic devices that do mechanical work depend for
their operation on the forces that arise in the presence of electric and
magnetic fields. In simple cases the forces act directly on or between
electrical charges—at rest, as in the quadrant electrometer, or in
relative motion, as in the familiar domestic television tube. Other
devices (e.g. galvanometers) rely on the forces between two or more
closed electrical circuits carrying current, and here it is possible to
use various alternative formulae for the force between current
elements, each of which predicts the force on a complete circuit
correctly. However, there are many electromagnetic devices that
utilise the forces exerted on polarized or magnetized matter, obvious
examples being ordinary relays and electric motors. These pondero-
motive forces form the subject of the present book: the problem
discussed is, in essence, the following. What is the total force (and
torque) acting on a polarizable body in an electric field, or a magneti-
zable body in a magnetic field, and how is this force distributed
within and over the body?

Specifying the location of ponderomotive forces is much the more
difficult part of the problem because the topic is essentially an
interdisciplinary one. It originates with the engineer who is interested
in electromechanical energy transfer, but it involves the concepts and
techniques both of continuum mechanics, which is familiar to an
applied mathematician, and of ferromagnetic domain theory, which
is the province of the solid state physicist. A successful treatment is
one that brings together the relevant ideas from these three separate
specialist disciplines: the viewpoint adopted in this book is that it is
desirable to accept information from any available source, so that,
for example, results derived from microscopic theory will not be
rejected—as they sometimes are in continuum mechanics—just
because they have been deduced microscopically. The interdisciplinary
nature of the subject has also, in the past, been the origin of some
confusion—real and semantic. For example, mathematicians and
engineers have often failed to realise that a magnetic material differs
from a continuum in that it is divided up into small regions, or
domains, each of which is magnetized to saturation. Whilst this
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Preface

realisation is important it does not lead—as is sometimes supposed—
to a facile solution of the problem. It is not feasible to dispense with
the familiar framework provided by continuum mechanics; and to
consider in detail the domain theory appropriate to a polycrystalline
aggregate of single-crystal grains merely results in the wood being
obscured by the trees. However, the existence of domains must be
kept continually in mind—there is no merit in asserting that the
wood does not consist of trees! Physicists, on the other hand, have
often been slow to appreciate the practical importance of predictions
of ponderomotive forces, since they become aware of the problem
only occasionally through, for example, the mechanical failure of a
device employing large magnetic fields, such as a synchrotron.

Because of the widespread use of rotating electrical machinery of
all types, electrical engineers are, of course, more aware of the
problem of ‘forces on iron parts’. Some extremely large machines
are in use nowadays and manufacturers are understandably reluctant
to publicise breakdowns, but there are two types of failure that occur
in practice. First, if the rotor becomes displaced from its central
position, the total ponderomotive force will be non-zero and may be
of sufficient magnitude to ‘pull over’ the rotor bringing it into
contact with the stator, so that mechanical damage and possibly
failure follow immediately. This phenomenon is usually initiated by
wear or deflection on one or more bearings, and it is important, for
example, in large induction machines and high-frequency inductor
alternators. Secondly, even when the total ponderomotive force is
zero, the force distribution may be such as to lead to failure of parts
of the machine. The rotor is, of course, very rigidly constructed but
breakages sometimes occur in parts of the stator: the fracture of
interpole bolts of traction motors and the fatigue failure of lamina-
tions in the stator teeth of large hydrogenerators may be cited as
examples. Mechanical resonance is usually important—as it is in the
associated problem of noise.

Both electric and magnetic ponderomotive forces are considered
but where, for convenience, attention has been concentrated on
only one case, the magnetic situation—being, in general, the more
difficult—has been chosen. To preserve the symmetry between the
treatments of electricity and of magnetism, the pole-strength
magnetization I = B — p,H (weber m—2) is used rather than the
current-loop magnetization M = I/u, (ampere m~'): rationalised
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m.k.s. units are used throughout. The relative permittivity, &, = &/e,,
and permeability, p, = u/u,, are not assumed to be constant (or
infinite) and are taken, even when not explicitly stated, to be field
dependent, i.e. &, = ¢,(E) and p, = u,(H). In addition, the choice of
material for discussion has been influenced by its potential appli-
cation to polycrystalline bodies of ordinary ‘soft’ ferromagnetic
substances, such as iron: a consideration of materials exhibiting
permanent polarization or magnetization is therefore excluded.
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CHAPTER 1

Introduction

1.1 Ponderomotive forces

When a piece of iron is placed in a magnetic field, it is, in general,
subject to a force that will move the iron unless it is restrained.
Such a force is known as a ponderomotive force. Ponderomotive
forces are also exerted on dielectric bodies in electric fields. The
material presented in this book refers to static fields only, and it is
also assumed that the dielectric or magnetic material is isotropic.
A consideration of single crystals and other anisotropic bodies is
thus specifically excluded. For convenience, the electric and magnetic
cases are treated separately. A problem in which a body that is both
dielectric and magnetic is placed in a combined electric and magnetic
field must therefore be solved by superpositiont of the results for a
dielectric body in an electric field and a magnetic body in a magnetic
field. When, as in these introductory remarks, it is not necessary
to distinguish between the electric and magnetic cases, they will be
treated together by referring to the ponderomotive force on a
material body in a field. ’

The interaction between a material body and the field in which it
is placed results not only in a tendency for the body to move but
also in the body being put into a state of stress. Since all solid
materials possess some degree of elasticity this leads to the material
being strained—that is, it leads to a deformation of the body. A
complete description of the ponderomotive force should therefore
include a specification of how the force is distributed throughout
the body, although the total ponderomotive force is often the
quantity of practical interest. The force distribution depends, of
course, on the electric or magnetic field conditions at points within
the body.

1 Materials that exhibit the unusual magneto-electric effect (Birss 1964) are
excluded from consideration.
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1.2 Maxwell’s field equations

When a material body of arbitrary shape is placed in a known field,
the field pattern is modified by the introduction of the body and the .
specification of the resulting field conditions can itself be quite a
formidable problem. The field conditions are completely specified
when solutions (satisfying the appropriate boundary conditions)
have been obtained to the familiar Maxwell’s equations

1E o ‘ 1
curlE = — =+, (1a)
divD = p, (1b)
IH=J e 1
curl H = J + =, . (Lo
divB = 0. (1d)

The solution of these equations is possible only if additional con-
Sstitutive relations are available connecting D to E, J to E and B to H,
such as D =¢e¢E, J=0E, B=puuH for a linear isotropic
material, or some more general relations for a non-linear material.
Maxwell’s equations (1) constitute a set of coupled first-order
partial differential equations connecting the various spatial com-
ponents of the electric and magnetic vectors. They can sometimes
be solved directly but it is often convenient to introduce potential
functions and so obtain a smaller number of second-order equations,
whilst satisfying some of Maxwell’s equations identically.
For static fields, Maxwell’s equations reduce to

curlE = 0, (2a)
divD = p, (2b)
curlH=J, (2¢)
divB =0, (2d)

and the vector with the vanishing curl can be written as the (negative)
2
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gradient of a scalar potential, ®, thus

E = —grad®, ©)]

whilst the vector with the vanishing divergence can be written as the
curl of a vector potential, A, thus

B = curlA. @

The definition of E and B in terms of ® and A ensures that (2a) and
(2d) are satisfied identically whilst (2b) and (2c) may be rewritten,
in terms of the potentials @ and A. It may be noted that, in contrast
to equations (1), equations (2) do not couple together electrical and
magnetic vectors: for time-varying fields the decoupling process is
achieved—as indicated in section 2.3(c)—by exploiting the arbitrari-
ness involved in the definitions of the potential functions. If the
potentials ® and A are known as functions of position throughout
a region of space, the vectors E and B may be found from equations
(3) and (4) whilst D and H may be found from the constitutive
relations.

1.3 Solutions in free space

In free space, the potential ® must satisfy the equation obtained by
taking the divergence of both sides of (3), namely

qu) = =7 | (5)

which is known as Poisson’s equation. If a region is free of charges,
the field being produced by charges that can be excluded from the
region by closed surfaces drawn around them, then Poisson’s
equation reduces in the charge-free region to Laplace’s equation,

V) = 0. (6)

This is a second-order partial differential equation and its solution
for each charge-free region contains two arbitrary functions that can
be determined from a knowledge either of the potential at all surfaces
or of the potential and the first (spatial) derivatives of the potential
at a selected number of surfaces. A solution to equation (6) that
satisfies the prescribed boundary conditions gives the value of the

3
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potential ® at every point of the region. An alternative approach is
to express @ as an integral, over a volume ¥ containing all the charges,
of a function that involves the charge density p. Thus a volume
element dV, the position of which is defined by a vector r, contains a
charge pdV and its contribution to the potential is, from Coulomb’s
law,

(7

The total potential due to all the charges is therefore

pdV
@ = J_U 47‘(807', ®
4

and this formula can be generalised to include a number of bodies
and also surface distributions of charge. '

In free space, the vector potential A must satisfy the equation
obtained by taking the curl of both sides of (4), namely

curlcurl A = graddivA — V?A = p,J ., )

Now the divergence of the vector potential A is not determined
uniquely by equation (4) and div A is undefined to the extent of the
addition of an arbitrary function of position (see 2.3(c)). For static
fields it is customary to make the simplest choice and to set div A =
0, since this can be done without altering equation (4). Equation (9)
may therefore be written in the form

AA = —p,J, (10)

where the Laplacian operator A = V? is defined, in curvilinear
coordinates by the identity in (9). In Cartesian coordinate systems,
however, AA = V?A is a vector the components of which are
obtained by operating with V2 on the three components of A. The
solution of equation (10) subject to arbitrary boundary conditions
is usually considerably more complicated than the solution of
Laplace’s equation (6), because the three components of A are not
independent but are connected by the equation div A = 0. In fact,
in the magnetic case it is distinctly advantageous to work with the
alternative integral expression obtained from the free-space form of

4
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Biot and Savart’s law. For a filamentary circuit / carrying a current i,

U [rxdl
B=4—7tl T (118)

and, for a volume distribution of current,

_ -1
B = 4ﬂfffJ x gradr™ ' dV, (11b)
1 4

so that the vector potential is given byt

Ko J
A= GJHF‘W' 12)

The integrals in equations (8) and (12) are often tedious to evaluate
but they represent a method of solution that is suitable for use when
a digital computer is available.

1.4 Solutions in the presence of material bodies

If dielectric or magnetic bodies are present, it is only for a few very
idealized problems that equations (2) can be solved with any degree
of simplicity. Analytic methods, such as those using conformal
transformations, do not often lead to solutions in closed form, and
solutions in terms of infinite series must converge fairly rapidly to be
useful. The practical problems in which the boundary conditions are
simple enough to permit an analytic solution (Hauge 1929, Weber
1950, Bewley 1948) are not numerous and are effectively confined to
two-dimensional problems. For practical applications experimental
and numerical methods of mapping fields have been devised, as well
as graphical and semi-graphical procedures involving some cal-
culations.

Perhaps the two best-known approaches are finite-difference
methods (Allen 1954, Shaw 1953, Southwell 1940, 1946, 1956) and the
electrolytic tank analogue method (Diggle and Harthill 1954). In a

t Equations (12) and (8) are discussed further below.
5
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finite-difference method, the differential equation for a potential is
replaced by many finite-difference equations which take the form of
linear equations connecting the potential at one of a finite number of
regularly spaced points, or nodes, with the potentials at other nodes
close to it. Trial values of the potentials at the nodes are then
successively improved by considering the effects at adjacent points
of a change in the potential at a particular node. Non-linearity in a
constitutive relation can be accommodated by a process of successive
approximation or, more usually, by replacing the constitutive relation
by two or more linear relations. In the case of the magnetization of
iron bodies, for example, saturation is often important, and this can
be allowed for in an approximate fashion by replacing the magneti-
zation curve (B versus H) with a similarly shaped curve constructed
by connecting two or more straight line segments of differing slopes.
In the electrolytic tank analogue method, advantage is taken of the
analogy between the electric field produced by a point charge and the
pattern of flow of current in a conducting electrolytic solution
when current is fed into it at a corresponding point. Since the current
is subject to the continuity equation

d'J@O 13
iv +(7t_’ (13)

where 0p/0t is zero except at points at which current is being fed
into (or removed from) the electrolyte, there is a direct analogy with
equation (2b). The electrolytic tank method can thus readily be used
to predict the electric field due to a collection of point charges or a
distribution of charges. It can also be used to determine the magnetic
field due to a collection of line currents, provided that the problem
is sensibly two-dimensional, for it is then possible to interchange the
roles of lines of force and lines of equipotential in the analogue. An
advantage of the method is that in two-dimensional problems it is
possible to allow for non-linearity in a constitutive relation by using
a tank in which the depth of electrolyte varies from place to place.

The specification of the field conditions that result when a material
body of arbitrary shape is placed in a known field can be, as mention-
ed above, quite a formidable problem, and it will not be pursued
further here. There is an extensive coverage of this problem in the

6
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literaturet and it will be assumed in what follows that the field
conditions can always be determined uniquely at points outside and
within the body. The problem of interest therefore is to specify the
distribution of ponderomotive force in terms of these known field
conditions.

1.5 Vector fields and their singularities

Having taken for granted that a solution—exact or approximate—
can always be found to the static form (2) of Maxwell’s equations, it
is desirable to consider what is involved in specifying field conditions
within a material body by the four vectors E, D, H and B, and indeed
why four are necessary rather than just one electrical and one
magnetic vector. In free space there is no need to distinguish between
the two-electric vectors E and D or between the two magnetic
vectors H and B. Moreover, a simple consideration of static electric
and magnetic fields reveals a difference between them in that they
exhibit different sorts of singularities. A graphical display, or field
plot, of the lines of force can reveal (in a favourably orientated
cross-section) two sorts of singularities typified by the diagrams
shown in Fig. 1.1. These are both singularities in the field, and

N
N ©

(b)

(a
Fig. 1.1
appear to act in some way as origins of the field. A singularity of

type (a) will be referred to as a source and a singularity of type (b)
as a vortex. It is a matter of experiment that sources are typical of

1 Interested readers may care to consult, for example, the book by K. J.
Binns and P. J. Lawrenson, Analysis and Computation of Electric and Magnetic
Field Problems, Pergamon Press, 1963.

7
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electric fields and are associated with the presence of charge whereas
vortices are typical of magnetic fields (produced electromagnetically)
and are associated with current.t Of course, both an indefinitely
small single charge and an indefinitely thin wire carrying current are
idealizations, but they are idealizations that are approximately
realized in practice. It is possible, for example, to experiment not
only with small charged material bodies but also with very small
fundamental particles (electrons, protons, etc.) that carry discrete
quantities of charge, whilst the approximation of neglecting the
thickness of a conductor carrying current is a common one in
electrical engineering. It may be mentioned in passing that the laws
relating fields to charges and line currents, once obtained, can be
readily extended to deal with surface and volume distributions of
charge and current.

The strength of a source or a vortex is a measure of how much of
the field originates at the singularity. If Fig. 1.1(a) represents lines
of force in some vector field F (for example, F = E), the strength of
the source depends on how many lines radiate outwards from the
singularity. Remembering that Fig. 1.1(a) is a two-dimensional
representation of a source in three dimensions, it may be seen that a
geometrically reasonable definition of the strength of a source is

given by
s' =§F.ds, (14)

N

where S is a closed surface surrounding the singularity. However,
many sources may be present simultaneously, so it is customary to
replace s° by a source density s = s'/V, where V is the volume
enclosed by the surface S, and to proceed to the limit when the
volume contracts whilst still containing the singularity. The source
density s is therefore defined by the equation

1
s = Lim l:—ﬁF.dS:l = divF. (15)
v-o0 LV )

T See 1.6 for a discussion of the existence of magnetic monopoles.
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