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Directed Algebraic Topology

This is the first authored book to be dedicated to the new field of directed algebraic
topology that arose in the 1990s, in homotopy theory and in the theory of concurrent
processes. Its general aim can be stated as ‘modelling non-reversible phenomena’ and
its domain should be distinguished from that of classical algebraic topology by the
principle that directed spaces have privileged directions and directed paths therein
need not be reversible. Its homotopical tools (corresponding in the classical case to
ordinary homotopies, fundamental group and fundamental groupoid) should be
similarly ‘non-reversible’: directed homotopies, fundamental monoid and fundamental
category. Homotopy constructions occur here in a directed version, which gives rise to
new ‘shapes’, like directed cones and directed spheres. Applications deal with domains
where privileged directions appear, including rewrite systems, traffic networks and
biological systems. The most developed examples can be found in the area of
concurrency.

MARCO GRANDIS is Professor in the Department of Mathematics at the
University of Genoa, Italy.
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Introduction

1 Aims and applications

Directed algebraic topology is a recent subject which arose in the 1990s,
on the one hand in abstract settings for homotopy theory, like [G1],
and, on the other hand, in investigations in the theory of concurrent
processes, like [FGR1, FGR2]. Its general aim should be stated as ‘mod-
elling non-reversible phenomena’. The subject has a deep relationship
with category theory.

The domain of directed algebraic topology should be distinguished
from the domain of classical algebraic topology by the principle that
directed spaces have privileged directions and directed paths therein need
not be reversible. While the classical domain of topology and algebraic
topology is a reversible world, where a path in a space can always be trav-
elled backwards, the study of non-reversible phenomena requires broader
worlds, where a directed space can have non-reversible paths.

The homotopical tools of directed algebraic topology, corresponding
in the classical case to ordinary homotopies, the fundamental group and
fundamental n-groupoids, should be similarly ‘non-reversible’: directed
homotopies, the fundamental monoid and fundamental n-categories.
Similarly, its homological theories will take values in ‘directed’ algebraic
structures, like preordered abelian groups or abelian monoids. Homotopy
constructions like mapping cone, cone and suspension, occur here in a
directed version; this gives rise to new ‘shapes’, like (lower and upper)
directed cones and directed spheres, whose elegance is strengthened by
the fact that such constructions are determined by universal properties.

Applications will deal with domains where privileged directions ap-
pear, such as concurrent processes, rewrite systems, traffic networks,
space-time models, biological systems, etc. At the time of writing, the
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most developed ones are concerned with concurrency: see [FGR1, FGR2,
FRGH, Gal, GG, GH, Go, Ral, Ra2].

A recent issue of the journal Applied Categorical Structures, guest-
edited by the author, has been devoted to Directed Algebraic Topology
and Category Theory (Vol. 15, no. 4, 2007).

2 Some examples

As an elementary example of the notions and applications we are going
to treat, consider the following (partial) order relation in the cartesian
plane

(zy) <@y) & V-yl<a' -2 (0.1)

The picture shows the ‘cone of the future’ at a point p (i.e. the set of
points which follow it) and a directed path from p’ to p”, i.e. a continuous
mapping a: [0,1] — R? which is (weakly) increasing, with respect to
the natural order of the standard interval and the previous order of the
plane: if ¢t < ¢ in [0, 1], then a(t) < a(t’) in the plane.

Take now the following (compact) subspaces X,Y of the plane, with
the induced order (the cross-marked open rectangles are taken out). A
directed path in X or Y satisfies the same conditions as above

Y (0.2)

We shall see that — as displayed in the illustrations above — there are,
respectively, three or four ‘homotopy classes’ of directed paths from the
point p’ to the point p”, in the fundamental categories TT1; (X), TTI; (Y);
in both cases there are none from p” to p’, and every loop is constant.
(The prefixes | and d- are used to distinguish a directed notion from the
corresponding ‘reversible’ one.)
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First, we can view each of these ‘directed spaces’ as a stream with
two islands, and the induced order as an upper bound for the relative
velocity feasible in the stream. Secondly, one can interpret the horizontal
coordinate as (a measure of) time, the vertical coordinate as position in
a one-dimensional physical medium, and the order as the possibility of
going from (z,y) to (z',y’) with velocity < 1 (with respect to a ‘rest
frame’ of the medium). The two forbidden rectangles are now linear
obstacles in the medium, with a bounded duration in time. Thirdly, our
illustrations can be viewed as execution paths of concurrent automata
subject to some conflict of resources, as in [FGR2], fig. 14.

In all these cases, the fundamental category distinguishes between
obstructions (islands, temporary obstacles, conflict of resources) that
intervene essentially together (in the earlier diagram on the left) or
one after the other (on the right). On the other hand, the underly-
ing topological spaces are homeomorphic, and topology, or algebraic
topology, cannot distinguish these two situations. Notice also that,
here, all the fundamental monoids Tm1(X, ) are trivial: as a strik-
ing difference with the classical case, the fundamental monoids often
carry a very minor part of the information of the fundamental category
111 (X).

The study of the fundamental category of a directed space, via mini-
mal models up to directed homotopy of categories, will be developed in
Chapter 3.

3 Directed spaces and other directed structures

The framework of ordered topological spaces is a simple starting point
but is too poor to develop directed homotopy theory.

We want a ‘world’ sufficiently rich to contain a ‘directed circle’ TS!
and higher directed spheres 1S" — all of them arising from the dis-
crete two-point space under directed suspension (of pointed objects).
In TS!, directed paths will move in a particular direction, with fun-
damental monoids Tm;(1S',z9) = N; its directed homology will give
TH,(18') =2 1Z, i.e. the group of integers equipped with the natural order,
where the positive homology classes are generated by cycles which are di-
rected paths (or, more generally, positive linear combinations of directed
paths).

Our main structure, to fulfil this goal, will be a topological space
X equipped with a set dX of directed paths [0,1] — X, closed under:
constant paths, partial increasing reparametrisation and concatenation
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(Section 1.4). Such objects are called d-spaces or spaces with distin-
guished paths, and a morphism of d-spaces X — Y is a continuous map-
ping which preserves directed paths. All this forms a category dTop
where limits and colimits exist and are easily computed — as topological
limits or colimits, equipped with the adequate d-structure.
Furthermore, the standard directed interval 11 = 1[0, 1], i.e. the real
interval [0, 1] with the natural order and the associated d-structure, is an
exponentiable object: in other words, the (directed) cylinder I(X) = X x

1T determines an object of (directed) paths P(Y) = yl (providing the
functor right adjoint to I'), so that a directed homotopy can equivalently
be defined as a map of d-spaces IX — Y or X — PY. The underlying
set of the d-space P(Y) is the set of distinguished paths dY .

Various d-spaces of interest arise from an ordinary space equipped
with an order relation, as in the case of 11, the directed line TR and
their powers; or, more generally, from a space equipped with a local
preorder (Sections 1.9.2 and 1.9.3), as for the directed circle 1S!. But
other d-spaces of interest, which are able to build a bridge with non-
commutative geometry, cannot be defined in this way: for instance, the
quotient d-space of the directed line TR modulo the action of a dense
subgroup (see Section 6 of this introduction).

The category Cub of cubical sets is also an important framework
where directed homotopy can be developed. It actually has some ad-
vantages on dTop: in a cubical set K, after observing that an element
of K; need not have any counterpart with reversed vertices, we can
also note that an element of K, need not have any counterpart with
faces permuted (for n > 2). Thus, a cubical set has ‘privileged di-
rections’, in any dimension. In other words, Cub allows us to break
both basic symmetries of topological spaces, the reversion of paths and
the transposition of variables in two-dimensional paths, parametrised
on [0,1]?, while dTop is essentially based on one-dimensional informa-
tion and only allows us to break the symmetry of reversion. As a conse-
quence, pointed directed homology of cubical sets is much better behaved
than that of d-spaces, and yields a perfect directed homology theory
(Section 2.6.3).

On the other hand, Cub presents various drawbacks, beginning with
the fact that elementary paths and homotopies, based on the obvi-
ous interval, cannot be concatenated; however, higher homotopy prop-
erties of Cub can be studied with the geometric realisation functor
Cub — dTop and the notion of relative equivalence that it provides
(Section 5.8.6).
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The breaking of symmetries is an essential feature that distinguishes
directed algebraic topology from the classical one; a discussion of these
aspects can be found in Section 1.1.5.

Directed homotopies have been studied in various structures, either
because of general interest in homotopy theory, or with the purpose of
modelling concurrent systems, or in both perspectives. Such structures
comprise: differential graded algebras [G3], ordered or locally ordered
topological spaces [FGR2, GG, Go, Kr], simplicial, precubical and cubi-
cal sets [FGR2, GG, G1, G12], inequilogical spaces [G11], small cat-
egories [G8], flows [Ga2], etc. Our main structure, d-spaces, was in-
troduced in [G8]; it has also been studied by other authors, e.g. in
[FhR, FjR, Ra2].

4 Formal foundations for directed algebraic topology

We will use settings based on an abstract cylinder functor I(X) and nat-
ural transformations between its powers, like faces, degeneracy, connec-
tions, and so on. Or, dually, on a cocylinder functor P(Y'), representing
the object of (directed) paths of an object Y. Or also, on an adjunc-
tion I - P that allows one to see directed homotopies as morphisms
I(X) — Y or equivalently X — P(Y'), as mentioned above for d-spaces.

As a crucial aspect, such a formal structure is based on endofunc-
tors and ‘operations’ on them (natural transformations between their
powers). In other words, it is ‘categorically algebraic’, in much the
same way as the theory of monads, a classical tool of category theory
(Section A4, in the Appendix). This is why such structures can gener-
ally be lifted from a ground category to categorical constructions on the
latter, like categories of diagrams, or sheaves, or algebras for a monad
(Chapter 5).

After a basic version in Chapter 1, which covers all the frameworks
we are interested in, we develop stronger settings in Chapter 4. Rela-
tive settings, in Section 5.8, deal with a basic world, satisfying the basic
axioms of Chapter 1, which is equipped with a forgetful functor with
values in a strong framework; such a situation has already been men-
tioned above, for the category Cub of cubical sets and the (directed)
geometric realisation functor Cub — dTop.

A peculiar fact of all ‘directed worlds’ (categories of ‘directed objects’)
is the presence of an involutive covariant endofunctor R, called reversor,
which turns a directed object into the opposite one, R(X) = X°P; its ac-
tion on preordered spaces, d-spaces and (small) categories is obvious; for
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cubical sets, one interchanges lower and upper faces. Then, the ordinary
reversion of paths is replaced with a reflection in the opposite directed
object. Notice that the classical reversible case is a particular instance
of the directed one, where R is the identity functor.

In the classical case, settings based on the cylinder (or path) endo-
functor go back to Kan’s well-known series on ‘abstract homotopy’, and
in particular to [Ka2] (1956); the book [KP], by Kamps and Porter, is a
general reference for such settings. In the directed case, the first occur-
rence of such a system, containing a reversor, is probably a 1993 paper
of the present author [G1].

Quillen model structures [Qn] seem to be less suited to formalise di-
rected homotopy. But, in the reversible case, we prove (in Theorem 4.9.6)
that our strong setting based on the cylinder determines a structure of
‘cofibration category’, a non-self-dual version of Quillen’s model cate-
gories introduced by Baues [Ba].

5 Interactions with category theory

On the one hand, category theory intervenes in directed algebraic topol-
ogy through the fundamental category of a directed space, viewed as a
sort, of algebraic model of the space itself. On the other hand, directed al-
gebraic topology can be of help in providing a sort of geometric intuition
for category theory, in a sharper way than classical algebraic topology —
the latter can rather provide intuition for the theory of groupoids, a
reversible version of categories.

The interested reader can see, in Section 1.8.9, how the pasting of
comma squares of categories only works up to convenient notions of
‘directed homotopy equivalence’ of categories — in the same way as, in
Top, the pasting of homotopy pullbacks leads to homotopy equivalent
spaces.

The relationship of directed algebraic topology and category theory is
even stronger in ‘higher dimensions’. It consists of higher fundamental
categories for directed spaces, on the one hand, and geometric intuition
for the — very complex — theory of higher dimensional categories, on
the other. Such aspects are still under research and will not be treated
in this book. The interested reader is referred to [G15, G16, G17] and
references therein.

Finally, we should note that category theory has also been of help in
fixing the structures that we explore here, according to general principles
discussed in the Appendix, Section A1.6.
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6 Interactions with non-commutative geometry

While studying the directed homology of cubical sets, in Chapter 2,
we also show that cubical sets (and d-spaces) can express topologi-
cal facts missed by ordinary topology and already investigated within
non-commutative geometry. In this sense, they provide a sort of ‘non-
commutative topology’, without the metric information of C*-algebras

This happens, for instance, in the study of group actions or foliations,
where a topologically trivial quotient (the orbit set or the set of leaves)
can be enriched with a natural cubical structure (or a d-structure) whose
directed homology agrees with Connes’ analysis in non-commutative
geometry.

Let us only recall here that, if ¢ is an irrational number, Gy = Z +9Z
is a dense subgroup of the additive group R, and the topological quo-
tient R/Gy is trivial (has the indiscrete topology). Non-commutative
geometry ‘replaces’ this quotient with the well-known irrational rota-
tion C*-algebra Ay (Section 2.5.1). Here we replace it with the cubical
set Cy = (OTR)/Gy, a quotient of the singular cubical set of the di-
rected line (or the quotient d-space Dy = TR/Gy, cf. Section 2.5.2).
Computing its directed homology, we prove that the (pre)ordered group
TH,(Cy) is isomorphic to the totally ordered group 1Gy c R. It fol-
lows that the classification up to isomorphism of the family Cy (or Dy)
coincides with the classification of the family Ay up to strong Morita
equivalence. Notice that, algebraically (i.e. forgetting order), we only get
H,(Cy) = Z2, which gives no information on 9: here, the information
content provided by the ordering is much finer than that provided by
the algebraic structure.

7 From directed to weighted algebraic topology

In Chapter 6 we end this study by investigating ‘spaces’ where paths
have a ‘weight’, or ‘cost’, expressing length or duration, price, energy, etc.
The general aim is now: measuring the cost of (possibly non-reversible)
phenomena.

The weight function takes values in [0,00] and is not assumed to be
invariant up to path-reversion. Thus, ‘weighted algebraic topology’ can
be developed as an enriched version of directed algebraic topology, where
illicit paths are penalised with an infinite cost, and the licit ones are mea-
sured. Its algebraic counterpart will be ‘weighted algebraic structures’,
equipped with a sort of directed seminorm.
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A generalised metric space in the sense of Lawvere [Lw1] yields a prime
structure for this purpose. For such a space we define a fundamental
weighted category, by providing each homotopy class of paths with a
weight, or seminorm, which is subadditive with respect to composition.

We also study a more general framework, w-spaces or spaces with
weighted paths (a natural enrichment of d-spaces), whose relationship
with non-commutative geometry also takes into account the metric as-
pects — in contrast with cubical sets and d-spaces. Here, the irrational
rotation C*-algebra Ay corresponds to the w-space Wy = wR/Gy, a
quotient of the standard weighted line, whose classification up to iso-
metric isomorphism (resp. Lipschitz isomorphism) is the same as the
classification of Ay up to isomorphism (resp. strong Morita equivalence).

8 Terminology and notation

The reader is assumed to be acquainted with the basic notions of topol-
ogy, algebraic topology and category theory. However, most of the no-
tions and results of category theory that are used here are recalled in
the Appendix.

In a category A, the set of morphisms (or maps, or arrows) X — Y,
between two given objects, is written as A(X,Y). A natural transforma-
tion between the functors F,G: A — B is written as ¢: F — G: A —
B,or p: F — G.

Top denotes the category of topological spaces and continuous map-
pings. A homotopy ¢ between maps f,g: X — Y is written as ¢: f —
g: X =Y, or ¢: f — g. Ris the euclidean line and I = [0,1] is the
standard euclidean interval. The concatenation of paths and homotopies
is written in additive notation: a + b and ¢ + 1; trivial paths and ho-
motopies are written as 0,,0y. Gp (resp. Ab) denotes the category of
groups (resp. abelian groups) and their homomorphisms.

Cat denotes the 2-category of small categories, functors and natural
transformations. In a small category, the composition of two consecutive
arrows a: * — z', b: ' — 2" is either written in the usual notation ba
or in additive notation a + b. In the first case, the identity of the object
x is written as id x or 1,, in the second as 0,. Loosely speaking, we tend
to use additive notation in the fundamental category of some directed
object, or in a small category that is itself ‘viewed’ as a directed object;
on the other hand, we follow the usual notation when we are applying
the standard techniques of category theory, which would look unfamiliar
in additive notation.



