Kt EnssEszLzsmEs (B2 EIMR)

INTRODUCTION TO
PROGRAMMING USING JAVA

AN OBJECT-ORIENTED APPROACH
SECOND EDITION

Javaml [E xR
BRIt o

David M. Arnow
Scott Dexter 2=
Gerald Weiss

. EREXREHARA

AF T EINEE B 3F 4 HBAM AT (B R

Introduction to Programming Using Java
An Object- Oriented Approach

Second Edition

Java @A RIEFIEIT
(%5 2 W)

David M. Arnow
Scott Dexter >
Gerald Weiss

Brooklyn College of City University of New York

A XK F H W
b

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.

Original English language title from Proprietor’ s edition of the Work.

Original English language title: Introduction to Programming Using Java: An Object- Oriented Approach, Second
Edition by David M. Amow, Scott Dexter, Gerald Weiss, Copyright © 2004.
All Rights Reserved.

Published by arrangement with the original publisher, Addison- Wesley, publishing as Addison- Wesley.

This edition is authorized for sale and distribution only in the People’ s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan). |

AFFZE R Pearson Education (354 3 F SR H) BANGTH 2R F At A1 .

For sale and distribution in the People’ s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

R FHEAREAMEBEA(ALFEPIEFE . B IFNTBEEMPEEE LX) 8 LT,
b AR EER A REICS B 01-2004-5635 5

RRAL RS, BREN4AST, %3RS . 010-62782989 13901104297 13801310933
AP EHMIEH Pearson Education (154 HH HRER) MAPHIHRE, TIREBEEFSHE

EH 4% B (CIP) 3

Java A X RBEF T (5 2 lt) = Introduction to Programming Using Java: An Object- Oriented Approach,

Second Edition/(Z£) [(Amow, D. M.), () 75 #7 % (Dexter, S.), (3£) T Hy (Weiss, G.) 3.
—2 . —REA . —Jb R IE S KA 1 hRdL , 2004. 10

(REFHFIE T EHIFLBH RI)
ISBN 7-302-09766-6

[.1... I.OM.. Q#..@T... ILIJAVAES—BRFEit—HSeR—8HM—3sr V. TP
b E A P 34 CIP BB (2004) 85 107002

H AR & R M dE: JEEEEKFEEIRE
http : //www. tup. com. cn] 4% . 100084
B2 #H . 010-62770175 Z RS 010-62776969

. FHHE

s AR RFEIRI T

. BB BIEILE BT AR

. 185 x230 EP3k: 44.75

: 2004 4210 A% 1 L 2004 4F 10 A 55 1 IKER

. ISBN 7-302-09766-6/TP - 6743

. 1 ~4000

: 68.00 7

0 B

A3 H & H RS
> 8 Jn 55 P D Dit 3

ABUAFEXTAIE . WEPLARERYT . B0, RITEFENEEFRE S, F 58 %A AR AR
RiEH., BEABE. (010)62770175-3103 5% (010)62795704

AR i AR

A 2L L, HFFENEE . BRUAESENNEFHEMHEI. TFEH0
KSR AA WS, EHARERRRNAL, ERBEZSFHEGMHE. §FHF,
EREFRRBRAANE L, MARZIBEEN. HARERFHAFTHBEMEHIBRE, N
TINREBAF R EFINR, BEEEFER e 3 B =Bk A B /MNE R

AR FH AL 1996 5740, SEINEZHRAFEIE, REHR T “ KEiTHEL
HENR(REHW) " F—RI5|1#HEH, ZRENEEOVEMIRF. BA2l L, &
MAFEIRERSFEFEMELRGTOVE, ECANEGME, #—2B7 KEEAR, K
BRBIAARST, —mBEEMFTERETXHREEHTRESFAREIMRETRIHTH
HPEMBM REZEN , ARAE RELTBUIETEIFLEM RS (REHMR) ", L
MEE . BRI A KPR ERARINBHHBRMBE LR RS EN]. EREERAT
XK. HERFARABENMNEFERSMTEIEFTOMNSF B, UFRNE KATBILET B
E2BMARINCGEEHR) " MEEY, BEaRBRIMENTE.

RSN) T

Preface

This book is intended as the primary text of an introductory course in program-
ming. It assumes no programming background. The material covered is sufficient

for a one- or two-semester sequence that would then be followed by a traditional
CS2 (data structures) course.

To the Student

This book is an introduction to the art of computer programming in Java. It uses
this popular language for a number of reasons:

= Java is an object-oriented language. Object orientation has become an essential

approach of the software development community. Over the course of this text
we will explain what makes a language object-oriented.

= Java is a relatively simple object-oriented language, at least compared to some
others, such as C++. Although much of the complexity of C++ is in areas
beyond the scope of our book, there are occasional pitfalls into which the
beginning student can wander. Many of these gotchas cannot occur in Java.

« It borrows many features from other popular languages, most notably C and
C++. This familiarity makes it attractive to users of those languages.

« It allows even the novice programmer to produce programs with fairly sophis-
ticated user interfaces—that is, buttons, list boxes, scrollbars, and so on.

« It runs on many machines—PCs, Macintoshes, Sun workstations, and so on.

» It provides some fairly sophisticated facilities, including relatively easy access to
networks and the Internet, making it attractive to many areas of programming.

« Programming in Java can be fun. As we pointed out above, even a relative
newcomer can use the facilities provided by Java to write a program that looks
nice and has sophisticated behavior.

Despite all the hoopla and fun, and despite the fact that you'll learn to use Java
along the way, we have a very specific purpose: to get you to begin to think like
a programmer. That means learning to analyze a problem, breaking it up into its
component parts, and devising a solution. It also means practicing a lot. Program-
ming is not learned simply from a book—you have to write lots of computer
code. You won'’t be an expert by the end of this book, but if you pay careful
attention and work at the programming exercises, you’ll be on your way.

To the Instructor

In this text, we use the Java programming language to introduce students to pro-
gramming. Our primary focus is on the process of developing software solutions

PREFACE

to problems. This process cannot be achieved in the abstract but requires a
description of much of the Java language and some of its class library, as well as

a discussion of a number of programming techniques and algorithms. The pref-
ace elaborates on how we achieve these goals.

A FAQ (frequently asked questions) section can be found on this book’s web site,
www.aw.com/cssupport. It covers many of the topics in a question-answer form.

Changes to the Second Edition

In the second edition, we have retained and sharpened our commitment to an
objects-early approach. In particular, the early chapters have been significantly
reworked and expanded. Chapters 2 and 3, on working with objects, incorporate
additional discussion and illustration of fundamental object-oriented programming
concepts; we also emphasize and exploit the benefits of viewing programming as
an act of modeling. We have expanded our treatment of the class definition pro-
cess (Chapters 4 and 5) to provide a more carefully paced introduction with more
examples. Class design now has its own chapter (Chapter 7), also with more and
richer examples. These new examples are partially supported by the earlier intro-
duction of some imperative programming concepts (such as primitive types,
assignments, and conditionals); other imperative concepts (advanced conditionals,
more primitive types, and simple counting loops) are covered in Chapter 6. The
discussion of traversing collections has been rewritten to use counting loops and
indexing; a brief explanation of using the Enumeration interface as an alternative
appears in Appendix D. In this way, we bring discussion of this topic into closer
alignment with our coverage of loop patterns, iteration, and the Vector collection.
We have also reorganized the later chapters somewhat, most notably by removing

the chapter of examples; some parts of this chapter are now distributed across the
remaining chapters.

We have rewritten much of the GUI supplement material to provide tighter connec-
tions between the supplements and the concepts introduced in the main text of the
chapter. See the GUI Supplements table of contents on xxxii for a brief overview.

Finally, we have moved all section exercises to the ends of chapters and added
many new exercises.

Paradigm

Any introduction to programming must take a stand on the issue of paradigm
choice. Our language platform is Java, so it is not surprising that our choice is
object-oriented programming (OOP). However, although it is pretty clear what
procedural and functional programming entail at the CS1 level, there are a variety
of competing visions of what OOP at this level signifies. We concentrate on:

= Defining and using classes
« Issues of behavior and responsibility
« Using composition, rather than inheritance

PREFACE

A typical problem in this text is solved by identifying a primary object in the
problem, describing its behavior, and then defining a class to provide that behav-
ior. Usually a small number (often just one) of independent subsidiary classes are
defined in the solution process. The solution is completed by writing a small
imperative driver, in the form of a main method, for the primary object.

In the early 1990s there was some confusion regarding the relationships between
OOP, procedural programming, and imperative programming. By now, it is gen-
erally well-understood that even though OOP and procedural programming are
distinct paradigms, imperative programming is equally a part of both. Certainly,
as soon as assignment enters the picture, one is doing imperative programming,
and sending messages that change object state may be viewed as imperative pro-
gramming as well. Thus, this text teaches both OOP and imperative programming
from the start. However, just as the procedures-early approach, long popular in
procedural CS1 classes, introduces the mechanics and use of procedure invoca-
tion prior to imperative devices such as conditionals and loops, so here we intro-
duce the mechanics and use of message sending and object creation before
conditionals, and class definition before iteration. The rationales in both cases are

identical; it is preferable to introduce the paradigm first and develop the impera-
tive devices in that context.

In procedural programming, the way to get a task done is to find a procedure that
does it and then to invoke the procedure. If no such procedure exists, the pro-
grammer has to write one. In OOP, the way to get a task done is to find or create
an object of a class whose behavior includes carrying out the task and sending the
object a message. If no such class exists, the programmer has to write one.

Process

Our primary focus is the process of developing software solutions to problems.
To this end, we introduce informal but methodical approaches to four areas:

= Developing a class specification from a problem statement

= Implementing a class given a class specification
s Constructing loops

» Constructing recursive methods

The first two of these approaches are introduced in a rudimentary way in Chap-
ters 4 and 5, are fleshed out in Chapter 7, and used consistently thereafter
throughout the book. The other two approaches are introduced with iteration
and recursion, in Chapters 10 and 14, respectively. They, too, are used consis-
tently thereafter, wherever iteration or recursion appear.

The consistent reuse of these methodical approaches is necessary so that students
realize that methodology is not just something to which one pays lip service but
that it can be genuinely useful in the development of solutions to problems.

The emphasis on process means that two common fixtures of introductory texts
are rarely seen in this book: dissection of code and incremental modification of

‘ PREFACE

code (although the latter does appear in some extended examples and exercises).
Dissection of code requires at the outset the presentation of a complete class
implementation without development. It is followed by a careful analysis of the

code. This approach is helpful in explaining how code works, but does not
explain the process of developing code.

Many of the topics and their order in the text have been determined by our com-
mitment to process. For example, before presenting the approach to class speci-
fication and definition, the student must be quite familiar with the idea of classes
as repositories of behavior and the use of composition of classes. To that end,
Chapter 3 discusses some of Java’s predefined classes (including BigInteger,
Date, and GregorianCalendar, and some of the i/o-related classes).

Language

As we elaborate on the process of program development, we introduce the fea-
tures of the Java language. To prevent the discussion of the details of those
features from digressing too far from the process of developing code, we often
defer such discussions to special sections called Java Interludes. In these sections,
we fill in the details of features introduced in the course of code development.
We also use these sections to introduce language features that do not appear
elsewhere but with which a CS1 student should have familiarity. Nevertheless,

several features of the Java language are not covered, such as bit operations, con-
currency, synchronization, and inner classes.

GUI Programming

Java’s support for graphical user interface (GUI) programming is one of the rea-
sons for its appeal in CS education—both to instructors and students. We have
chosen to treat this topic in a series of GUI supplements, that is, special sections
that appear at the end of each chapter. The main body of each chapter is entirely
independent of these supplements. Each supplement introduces a new set of GUI

tools and/or techniques in a context that reinforces the material introduced in the
main body of its chapter.

The advantage of this organization is that it permits instructors to omit GUI pro-
gramming altogether or introduce it at any time. It also serves to strengthen the
focus of the main text on object-oriented programming rather than on language-
specific features. Furthermore, it isolates the main body of the text from changes

to the class library, primarily in the Abstract Window Toolkit (AWT) portion of the
class hierarchy.

We have chosen to work exclusively with applets rather than applications in the
GUI supplements for several reasons:

» It is easy to transform an applet into an application; the reverse is more diffi-
cult and in some cases impossible.

PREFACE vii

« The execution context of applets is more involved and therefore more worthy
of a discussion in the text.

» Students love creating “cool” web pages and displaying their applets in them.

Broad coverage of the AWT is beyond the scope of this text. Our approach there-
fore is to address the following critical issues:

= Applet basics (Chapters 1 and 2)
« Layout—placement of components (Chapter 4)
« Event handling (Chapters 6 and 8)

s Precision in text and graphics (Chapters 5, 11, and 12)
s Threads (Chapters 11 and 14)

Along the way many useful AWT classes and methods are encountered.

Similarly, we have chosen to work almost exclusively with AWT rather than

Swing (although we include a brief study of Swing as the final GUI supplement).
Our reasons include the following:

« Unlike the change from JDK 1.0’s event model to AWT's (JDK 1.1), the differ-

ences between AWT and Swing are primarily aesthetic, at least at the novice
level.

« Swing introduces several complexities that are unnecessary for the beginner
(for example the introduction of a content pane for component placement).

» The more interesting improvements only become understandable once inherit-
ance, interfaces, and polymorphism are introduced (for example, the fact that

all JComponents inherit from the AWT Container component allows placement
of JComponents, €.g., icons, into other JComponents, €.g., buttons).

Flexibility

Every CS department has its own culture and its own goals for CS1. Even instruc-
tors who completely share our approach to OOP in CS1 may want to reorder or
even omit some of the topics in this text. Accordingly, we have made every effort
to make the introduction of many topics mutually independent. At the same time,

we do want the topics in the book to build on each other. It's worth mentioning
a few ways in which we resolved this tension.

Inheritance Inheritance is the subject of Chapter 12. However, an instructor
who wishes to introduce this topic earlier in the course can go directly from
Chapter 7 to Chapter 12 and work with the first two thirds of that chapter. The

last third of the chapter addresses polymorphism and interfaces and uses material
from Chapters 10 and 11.

Recursion Recursion is the subject of Chapter 14. However, an instructor who
wishes to introduce recursion earlier in the course can go directly from Chapter 7

viii

‘ PREFACE

to Chapter 14 and work with the first third of the chapter, which does not involve

arrays and vectors. On the other hand, an instructor who wishes to omit the
topic of recursion can do so.

Exceptions Exceptions are the subject of Chapter 13. However, the majority of
the chapter is approachable directly after Chapter 7.

And, of course, the GUI supplements offer the instructors a great deal of flexi-

bility with respect to the topic of graphic and event-driven programming. See the
GUI supplement table of contents on page xxxii for a brief overview.

The dependency diagram summarizes these relationships.

Chapter | ——p Chapter 2 —p Chapter 3 ——p Chapter 4

1

Chapter 7 == Chapter 6 g Chapter 5

'

VAARAAAAAAAAAAANANANAANDS Cl‘lapter 8
The "fast” track.
The first part of 1
Chapters 12, 13, Chapter 9
and 14 can be o
presented after 1
Chapter 7.
Chapter 10
Chapter 11 \
1 \ Chapter 13 Chapter 14
Chapter 12
Chapter 15
Input/Output

We believe that it is important to give students thorough experience with classes,
objects, constructors, composition, cascading, and the concept of a class as a model
before they go about the business of writing class definitions (beginning in Chapter 4).
Chapter 3 presents a rich and involved discussion of these vital topics using a variety
of example classes, including some of the classes in the java.io package.

Chapter 3 is integral to our sequence of exposition, but for the sake of those instruc-
tors who may have alternative approaches to preparing students for Chapter 4 and

PREFACE ix

therefore wish to bypass Chapter 3, we have provided a very simple i/o package,
AWIO in Appendix C, which may be used instead of Sections 3.9-3.12.

Typefaces in Code Examples

It would be useful now to identify the typefaces of the four elements that appear
in code examples.

First there is the code itself:

class PrefaceExample {
public static void main(String[] arg) {
System.out.println("just an example”);

}
}

We often add comments to the code, notations that start with // or are surrounded
by /* and */. These are intended to be notations that would actually be part of
the code. The second line of the following code is an example of a comment:

class PrefaceExample {

// Just print a short exemplary statement on the display.
public static void main(String[] arg) {
System.out.println("just an example");

}
}

As we develop computer code, we will often make a notation that “holds the
place” and represents code that is yet to be written. An example of such a place-
holder (or pseudocode) appears in the fifth line of the following code:

class PrefaceExample {
// Just print a short exemplary statement on the display.
public static void main(String[] arg) {

System.out.println(”just an example");
Additional output statements go here.

}

Finally, explanatory remarks that would not normally be part of the code but

serve to aid our presentation are placed in shaded screens around the code, often
with arrows:

class PrefaceExample {
// Just print a short exemplary statement on the display. -
public static void main(String[] arg) {
System.out.println("just an example”);
Additional output statements go bere.

PREFACE

An Annotated Overview of the Chapters—The Non-GUI Parts

Chapter 1: Jumping Into Java Here we introduce the concept of program-
ming as a means of creating models of situations. Our primary goal is to intro-
duce the reader to ideas of classes, objects, and message passing as they are

realized in Java. In addition, we present and explain an example of a program
and discuss the mechanics of writing and running Java programs. -

Chapter 2: Sending Messages and Performing Operations In this chapter,
the focus is on the mechanics of using objects by sending them messages and all
that this entails. We elaborate on the three key ideas presented in Chapter 1—
classes, objects, and message passing—and introduce additional OOP and imper-
ative essentials: methods, arguments, return values, signature, prototype, over-
loading, reference variables, declarations, assignment, ints and arithmetic, and

simple conditionals. The String and PrintStream classes are used to illustrate
these ideas.

Chapter 3: Working with Objects and Primitive Types The chapter begins
by showing how to use a class’s constructor to create objects. We continue to
emphasize the theme of class as a repository for behavior. This idea is reinforced
through an exploration of some of Java’s predefined classes; we also explore
how behaviors can be combined using cascading and composition. At the same
time we introduce a few more imperative programming concepts (such as condi-
tionals and boolean values) to increase the richness of our examples.

Chapter 4: Defining Classes By this time, the student is quite clear about the
first principle of OOP: If anything needs to be done, find an object that can do it
and send it a2 message. Now we show the reader how to define new classes. This
definition requires quite a bit in the way of mechanics, which we begin covering
in this chapter: class definition structure, method definition structure, declaration,
scope and use of parameters, local variables, instance variables, and the return
statement. Amid all these necessary language details we try to maintain a focus
on the concepts of bebavior, interface, and state. Along the way we introduce a

limited version of the methodical approach to class definition that is presented in
the next chapter.

Despite the embryonic character of the approach, once we get through this chap-
ter in our courses, we breathe our first sigh of relief. At this point we can give
assignments that involve the definition of new classes. We are now doing OOP.

Chapter 5: Advanced Class Definition In this chapter we cover some more
mechanics of class definition: constructors, static methods, final values, and the
keyword this.

Chapter 6: Inside the Method: Imperative Programming Now that we have
discussed the major issues of class definition, we turn to the topic of writing powerful

PREFACE Xi

methods. We continue with further examples of class definition, but here our
focus is on imperative programming concepts (primitive data types and a wide
selection of conditional statements, as well as an introduction to counting loops)
that we can employ to provide the behavior our methods require.

Chapter 7: Class Design It is here that we introduce the methodical approach
to class definition that we use consistently through the rest of the text. This
approach starts by identifying the nouns in the problem statement. From there, a
primary object is identified. This object’s class is then implemented, with the
implementation driving the determination of the additional classes needed in the
problem. The implementation of a class entails defining its behavior and state.

This straightforward “waterfall” approach is sufficient for most design problems
that would be encountered by a CS1 student.

Chapter 8: Verifying Object Behavior This chapter is an overview of the need
for and techniques for testing. It introduces the concept of test drivers and mod-

ule testing. Additionally, it provides the reader with a starting point for the selec-
tion and construction of test cases.

Chapter 9: Working with Multiple Objects Here we introduce additional
limited forms of iteration and the notions of a collection. The while loop is intro-
duced and its mechanics are explained but, pending further discussion in the
next chapter, its use is confined to the read/process loop pattern:

read

while (noteof) {
process
read

}

We also introduce a new for loop pattern:

for (i = 0; 1 < size of collection; i++)
process element number i

The collection we use is the Vector class. This provides several advantages:

= The complexity of indexing is deferred until the student can get a handle on
the processing of multiple objects.

= No new syntax is required. The vector is just another object and is managed
by sending messages to it.

At the conclusion of the chapter we introduce arrays and illustrate some of the
similarities and differences between arrays and Vectors.

Despite the limitations, once we get through this chapter in our courses, we
breathe a second sigh of relief. At this point we can give assignments that are
much more reminiscent of “real” applications, as distinct from utility classes.

‘ PREFACE

Chapter 10: Designing Iteration This is an in-depth chapter on an all-important

CS1 imperative programming issue: the construction of loops. A survey of CS1
texts and courses reveals three approaches:

» The null approach—just imitate the code in the book
= Providing a set of loop patterns

» Some kind of methodical development technique, usually a watered-down for-
mal method

In this chapter, we combine the last two of these. We present a methodical tech-

nique and then apply it to quite a few typical problems, identifying the results as
loop patterns that we can refer to later.

Chapter 11: Maintaining Collections of Objects This chapter focuses on algor-
ithms for searching and sorting. We also go beyond the usual venue of collection

objects and arrays to consider searching external files. In this connection, we take
the opportunity to introduce Java threads.

Chapter 12: Extending Class Behavior Our approach to inheritance is to
emphasize the extending of the behavior of a superclass by a subclass. This is the
way in which inheritance is most commonly used, especially by the beginning
programmer—taking an existing class and adding state and behavior to produce
a richer class. We do this in the context of those classes, both predefined and
programmer-defined, introduced in Chapters 3-7 for the following reasons:

= The classes that we extend are already familiar to the student.

» The instructor may introduce inheritance earlier in the course, for example,
immediately after Chapter 7, if it is so desired.

Extension of state, protected instance variables, overriding, and polymorphism
are easily motivated in this context.

The instructor covering the GUI supplements may wish to cover at least the
beginning of Chapter 12 somewhat early to give the student some appreciation of

how inheritance allows even the beginner to implement complex windowed
applications.

We also present an introduction to another use of inheritance: factoring out the
common behavior/state of several logically related classes, producing a super-
class and a class hierarchy. Again we emphasize the concept of behavior and

modeling in which the various layers of the hierarchy model different abstrac-
tions of the objects.

Finally, interfaces are presented as a means of forcing a class to conform to a
specified protocol.

PREFACE xiii

Chapter 13: Exceptions Another theme running through the text is that of
responsibility-driven programming. Classes should be responsible for as much of
their behavior as possible. The other side of the coin is the idea that classes
should not be responsible for behavior that is not logically theirs. We present
exception handling in this light—as a way for a method to signal an exceptional,
not necessarily erroneous, situation to an invoker of that method. Though some
knowledge of inheritance is necessary to fully appreciate the structure of an
exception hierarchy, the first part of this chapter may be covered at a relatively

early stage (after Chapter 7) in order to clarify the throws clause code present in
many of the methods signatures.

Chapter 14: Recursion In this treatment of recursion, we focus on its use as a
programming tool. We start with extremely simple problems that some might
consider inappropriately easy for recursion. These problems provide a context for
developing an approach to constructing recursive solutions. We then take an
obligatory detour and discuss how recursion is implemented, but we end that dis-
cussion with a stern admonition for the student to focus on how recursion is used
and to ignore the implementation issue. We then move to two problems whose
complexity cry out for recursion—generating permutations and the classical Tow-
ers of Hanoi problem—and end with a comparison of recursion and iteration.

When we get through this chapter in our courses we breathe a third sigh of relief.
At this point, we have covered assignment, variables, expressions, numeric and
logical and string types, interactive and file i/o, control structures, functions
(methods), structures (classes), arrays, several algorithms, recursion, testing and
debugging—all the traditional material of CS1. And of course we've done more:
classes, objects, messages, plus any material from the GUI supplements that have

been included. There are no more sighs of relief save the sigh when the final
grades of the course are turned in to the registrar.

Chapter 15: Client/Server Computing In this chapter we provide a brief
introduction to network programming using Java. We lay out some fundamental
ideas about the Internet (in particular, we describe the nature of a TCP connection)
and use these ideas to support the development of simple HTTP and SMTP clients.

Appendices The appendices include:

= A glossary of all the defined terms in the text (containing chapter terminology
lists and terms from the GUI supplements)

« A description of how to write and run Java programs in a UNIX/Linux, Win-
dows, or MacOS X environment

= An alternative set of classes supporting input and output that may be used in
lieu of Java’s predefined i/o classes.

= A brief discussion of using the Enumeration interface to traverse a collection.

Xiv

‘ PREFACE

Supplemental Materials

The following supplements are available to all readers of this book at
WWW.aw.com/cssupport:

« Source code: All the completed classes and methods that appear in the text.
=« JavaPlace access

« Errors: We have worked hard to avoid these and hope there are few. Here you
can link to a list of errors that have been discovered.

The following instructor supplements are only available to qualified instructors.
Please contact your local Addison-Wesley Sales Representative, or send e-mail to
aw.csc@aw.com, for information about how to access them.

» Instructor’s Manual with Solutions: This contains teaching suggestions, sample
syllabi, and additional questions and problems that are suitable for homework.
Also included are fully worked solutions to all exercises.

« Chapter by chapter test bank available as a Word file or in Test Gen format
« PowerPoint slides of all figures

Contact Us

We welcome questions, comments, suggestions, and corrections. Our email
addresses are:

arnow@turingscraft.com
sdexter@brooklyn.cuny.edu
welss@turingscraft.com

Acknowledgments

As everyone who reads the acknowledgments section of prefaces knows, text-
books are really the result of the collaboration and support of many people. The
support we received from Addison-Wesley was first rate.

Thanks to Nathan Schultz, Lesly Hershman, and Katherine Kwack in Marketing;

Patty Mahtani and Jeffrey Holcomb in Production; Joyce Cosentino Wells in
Design; and Daniel Rausch and Edalin Michael at Argosy Publishing.

We are especially grateful to Galia Shokry and Maite Suarez-Rivas for their
patience and encouragement.

Also essential to this effort were a host of reviewers: Michael Crowley, University
of Southern California; Ralph Deters, University of Saskatchewan; Le Gruenwald,
University of Oklahoma; David P. Jacobs, Clemson University; Chung Lee, Califor-
nia State University; Mike Litman, Western Illinois University; Yenumula B. Reddy,
Grambling State University; Nan Schaller, University of Rochester; Esther Steiner,

PREFACE XV

New Mexico State University; and Shih-Ho Wang, University of California, Davis.
From the first edition we thank the following reviewers: Jan Bergandy, University
of Massachusetts Dartmouth; Robert H. Dependahl, Jr., Santa Barbara City Col-
lege; Eileen Kraemer, Washington University in St. Louis; Ronald L. McCarty, Penn
State Erie; David D. Riley, University of Wisconsin La Crosse; Jim Roberts, Carn-
egie Mellon University; Dale Skrien, Colby College; and Ken Slonneger, Univer-

sity of Iowa. These reviewers made many valuable suggestions and challenged us
to refine and at times rethink our approach.

Our approach to CS1 using Java continues to mature along with that of the CS
education community. Few of the ideas in this book are solely ours, but we hope

we have managed to represent some of the best thinking of our fellow educators.

The customary place for acknowledgments to the family of the author is at the
end. We are not ready to violate tradition, but the thanks we owe to our families
for their support, encouragement, involvement, and love belongs not just at the
end but at the beginning, the middle, and the end of the acknowledgments
because that’s where they were with us: all along, at every stage. During the
course of the project, our families put up with absences, late nights, early morn-
ings, obsessive muttering about “GUI supplements,” unwashed dishes, late din-
ners, lots of take-out, and monopolization of the family computer, not to mention
bouts of discouragement and worry. In spite of this, they gave us all the love and
support one could dream of and we will never forget this. Thank you,

Barbara Jeanne Fern

Kera David, Sharon, and Kathy Yocheved
Alena The Theoharis clan Zvi
Joanna Shlomo

David M. Arnow Scott Dexter Gerald Weiss

