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PREFACE TO THE CLASSICS EDITION

On the occasion of the reprinting of my book by SIAM in its Classics in Applied
Mathematics series, I have been asked to say a few words about why this book is still
relevant and how it relates to the current situation in perturbation theory. This is
actually quite easy to do, because as far as the material covered in this book is
concerned, nothing has changed. Of course, there have been developments in the field.
But this book is an introduction, and the recent developments have occurred at a level
beyond what is presented here. In addition to these developments, several new
introductions to perturbation theory have been published. But among introductions,
mine is still unique in its attempt to present perturbation theory as a natural part of
a larger whole, the mathematical theory of differential equations, and to dwell at some
length on the meaning of the results and their connections with other ways of studying
the same problems. It is still the fashion to treat perturbation theory as a bag of heuristic
tricks with no foundation, leading to approximate solutions that are justified only by
comparing them with numerical solutions or experimental data. Books of this kind
still make the standard error of confusing asymptotic validity with asymptotic ordering.
If my book has one central message, it is to clarify this particular issue for the beginning
student (and along with it, the related issue of the meaning of various kinds of
uniformity).

The reception that my book has received is probably what I should have expected:
it has been warmly praised by the leading experts in the field and by the occasional
bright student who has found clarity here for the first time, and it has been almost
entirely ignored as a book for classroom use. At lowa State University, where the book
and its associated course were developed, perturbation theory is taught as a graduate
course in the mathematics department, but elsewhere the subject is mostly taught by
engineers. In hindsight, it was probably foolish to hope that many of them would adopt
this book. But now that the original printing has sold out, there seems to be a demand
for copies from those who do teach or use perturbation theory in a mathematical context.
Perhaps publication by SIAM will cause this book to reach a more receptive audience.



xiv.  PREFACE TO THE CLASSICS EDITION

The question that I am asked more frequently than any other is why this book does
not have more about boundary value problems, especially boundary layer (as opposed
to initial layer) problems. There are three parts to the answer: one is personal preference
and knowledge, another is deliberate decision, and the third is to say, “Look again; there
is more there about boundary values than you might think at first sight” The personal
preference part is that I think mostly about dynamical systems, and most dynamical
systems problems are initial value problems. The deliberate decision part is connected with
the overall scheme of the book, which is to treat both the heuristics and the error
estimation for each method. Error estimation for initial value problems is almost always
centered around one technique, Gronwall’s inequality, whereas error estimation for
boundary value problems requires a wide variety of techniques such as Green’s functions
and various comparison theorems. To present all of these techniques, for first year
graduate students who cannot be presumed to have had exposure to them, would have
made the book an “introduction to applied mathematics” rather than to perturbation
theory. By focusing on initial value problems 1 was able to present all of the standard
perturbation methods, and their rigorous justification, without long digressions on
estimation methods other than Gronwall’s inequality. The book Singular Perturbation
Theory by Donald R. Smith (Cambridge University Press, 1985), mentioned in the
preface to the first edition of this book, is a good source for a variety of error estimation
techniques that go beyond those developed here. The “look again” part of the answer
is to point out that boundary value problems are often treated in this book as a second
application of ideas already developed for initial value problems, and that therefore the
boundary value problem material does not take up as much space as in most books because
it is not necessary to repeat in detail things that have already been covered. This economy
of space is another consequence of treating the ideas in relation to one another rather than
as disconnected tricks. Examples include the linkage of boundary value problems to initial
value problems by the shooting method in section 2.5, and the heavy dependence of the
short boundary layer chapter (chapter 8) on the longer initial layer chapter (chapter 7).
For instance, there is no need to repeat the extensive discussion of the Van Dyke rules
and overlap domains (sections 7.2 and 7.3) in chapter 8.

This edition is a reprint of the original, with no changes other than correction of
typographical errors and a few more serious errors. One error that has not been corrected,
because it is minor and would require redrawing a complicated figure, is in Figure 4.3.1:
the curves intersecting at the unstable rest point do not have a vertical tangent but, rather,
cross with two distinct tangents.

James A. Murdock



PREFACE

The beginning student of differential equations quickly exhausts the few
types which can be solved “in closed form,” that is, using elementary func-
tions: the first order exact, linear, and homogeneous equations; the higher
order linear equations with constant coefficients; the partial differential
equations that are reducible to these by separation of variables. After this,
there are several directions: advanced theory, approximation of solutions
on the digital computer by numerical analysis, approximation of solutions
by means of formulas. The last is the primary subject of this book. The
advantage of having an approximate formula for the solution of an equa-
tion, as opposed to having a computer program that generates numbers,
is that it is more easily possible to see the role of the different variables
and parameters in the solution: to recognize, for instance, the effect of a
friction parameter on the frequency of an oscillation. There are, of course,
advantages to numerical methods as well, one of the greatest being that
they apply over a wider range of the parameters. Perturbation methods, as
the name implies, are useful only when the equation to be solved is close
to (“is a perturbation of”) a solvable equation.

Perturbation theory has the reputation of being a bag of tricks giving
formulas that often work but are seldom justifiable. It is viewed this way
by many who use it successfully, as well as by those who refuse to use
it because of its alleged lack of mathematical rigor. But one only needs
to remember that the definition of asymptotic series was due to Henri
Poincaré to realize that the separation of perturbation methods from other
approaches (such as the geometrical analysis of solution orbits), although
common in the classroom today, is a betrayal of the true nature of the
subject. Just as one should never feed a differential equation into a com-
puter without having a feeling for the type of solutions to be expected

XV
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and what numerical difficulties they threaten, one should never (or almost
never) apply a perturbation method without at the same time considering
the existence and uniqueness of solutions, the solution geometry, possible
bifurcations, and other factors that might affect the accuracy and meaning
of the solutions.

On the other hand, to present perturbation theory in such a holistic con-
text poses a difficulty. Because of the demand for courses in perturbation
theory from the extremely applied end of the mathematical spectrum, and
because of the ease of teaching a course that is almost entirely formal in
content (a “cookbook” course), it has become popular to teach perturbation
theory at a beginning graduate level to students who have not yet mastered,
or even been exposed to, the methods of proof needed to establish the ex-
istence of the solutions to which approximations are being found. Some of
the students in such a course, particularly those coming from outside the
mathematics department, may never study these proof techniques. Does
this mean that they should be denied an awareness of the extent to which
mathematical theory interacts with practical computational methods, es-
pecially when it is this very theory that makes it possible to appreciate the
conditions under which the methods may fail? On the contrary, it would
seem that one of the most important mathematical skills to be acquired
by a user of mathematics is precisely the ability to read a mathematical
theorem and glean its significance for an application, without necessarily
studying its proof. And for the prospective mathematician, who already
has some appreciation of the need for proof, an exposure to problem solv-
ing based on theorems whose proof will be studied later can only help the
student to feel “at home” when the proofs are finally encountered.

Therefore it is the premise of this book that even at a beginning level,
perturbation theory should be presented not as an isolated collection of
cookbook techniques but as a part of the mainstream of mathematics. This
necessarily means that theorems covered in other mathematics courses
will be encountered. Our approach is to make these theorems available,
whether or not the student has seen them elsewhere, by a clear statement
and intuitive discussion in an appendix. The mathematically sophisticated
reader will of course not need these appendices, although even such a
reader may find bits of intuitive insight fall into place in reading them;
I certainly did, as I wrote them. For others, they will serve as examples
of how to extract the meaning from a mathematical statement, or as a
foretaste of things to be studied later.

Throughout this book, my effort has been to say the important things
that no one ever seems to say, the simple insights that finally dawned on me
after months (sometimes years) of working with a method and reading its
standard literature; the things that made me think: “Why didn’t they tell me
that in the first place?” If my experience is at all typical, there must be many
students who will welcome the discussions in this book, although others
may find the book too “chatty” and wish for more formulas and fewer
words. Some may feel that there are not enough solved computational
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examples. My response to this is one of personal temperament. I do not
enjoy computation for its own sake, and whenever I attempt a problem,
I end up spending two weeks searching into its meaning, its theoretical
significance, possible variations, places where it might stretch the limits
of existing theory, and so forth. Therefore I do not have a large stock of
problems from which to draw for this book; almost every problem I have
ever solved, if it had anything worthwhile to contribute, is included here.
I can make no claim to the kind of computational virtuosity exhibited in,
for instance, the books by Ali Nayfeh. Some of my examples are taken
from his books, frequently with additional development. (For instance,
the solvable triple-deck boundary value problem taken from Nayfeh and
given here in Example 8.1.1 becomes unsolvable when changed to an initial
value problem, Example 7.6.2.) This book is in many ways complementary
to Nayfeh’s books, and certainly does not replace them.

I have made no effort to distinguish between new and old results in the
main text of the book. There are many elementary ideas here that I have
never seen in print, which I had to develop in the same way as I would a
research result, and yet I cannot claim them as my own, since many people
must have known them without writing them out explicitly. An example is
the discussion of what I call the “trade-off” property of Lindstedt series: A
solution that is accurate to order O(e*) on a time interval of length O(1/e)
is also accurate to order O(¢*~/) on an interval of length O(1/e!*}) for
0 < j < k. This can be proved easily for the Lindstedt method, and yet
fails for multiple scale methods in general. The literature is full of vague
claims to this effect for both methods. I have not seen the proof for the
Lindstedt case before, and yet it is too elementary to claim as new. On the
other hand, I have recently given an example which I think makes clear
for the first time that there are fundamental limitations on the attempt to
extend the multiple scale method to longer intervals of time. This example
(in a simplified form) is outlined in the text, without indicating it as mine.
Each chapter does end with an annotated “Notes and References” section,
which is intended to guide the student to related reading and occasionally
to give historical information; the original attribution of results that are
not in general circulation is given here when it is known to me. These notes
are in no way intended to be exhaustive or up to the minute.

The book is divided into three parts, covering regular perturbation the-
ory, oscillatory phenomena (with the Lindstedt, multiple scale, and aver-
aging methods), and transition layer phenomena (initial layers, boundary
layers, turning points, and such). The first two of these parts have been in
preparation for a number of years and contain most of the original contri-
butions; the second part, especially, is closely related to my own research
and goes far enough to provide initial access to my papers. (But no farther;
I have resisted the temptation to unbalance this book too greatly by pre-
senting actual research here.) The third part contains new expositions of
classical ideas but does not reach as close to current research as does the
second. (The one relatively recent topic mentioned in this part, without
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much development, is canards.) Largely this is because of my own lack of
extensive knowledge in transition layer phenomena. I have tried to learn,
and since as a thinker I tend strongly toward the “foundational,” I have
worked hard at understanding the basics. The result is that students strug-
gling with “matching” for the first time seem to find the approach taken
here to be much less mysterious than the usual exposition; that is, if they
are interested in more than computational facility.

Most of the notations used are self-explanatory. Boldface is used for
vectors, although in advanced mathematics this is usually dispensed with,
and students need not feel obligated to underline or otherwise designate
vectors in their own work. All vectors are to be treated as column vectors,
unless otherwise indicated, whenever matrix multiplication is involved, but
we still write them as x = (x3,...,Xxy) most of the time without indicating
“transpose” or “col.” A boldfaced function with a boldfaced subscript in-
dicates the matrix of partial derivatives of the components of the function
with respect to the components of the subscript; in each row of such a
matrix, the component of the function is fixed and the component of the
subscript varies. As a general rule, N and M are used for dimensions of
vectors, n for the general term of a finite or infinite series, and k for the
last term of a finite series. Other indices are used as needed; it should be
clear when i is an index and when it is v—1.

There are a few textbooks that serve as general references for additional
reading on most topics in this book. These will not be repeated in each
“Notes and References” section, except to point out something particularly
good for an individual topic. Therefore they will be listed here, with brief
comments. The works of Ali Nayfeh are excellent references for the com-
putational aspects of all parts of perturbation theory, but are not reliable
in regard to the theory. The most useful are

Ali Nayfeh, Introduction to Perturbation Techniques, Wiley, New York,
1981

and
Ali Nayfeh, Perturbation Methods, Wiley, New York, 1973.

The former is an introduction to the basic techniques with many worked
examples and is in most cases the best book for the student to consult when
looking for additional exercises or for an alternative explanation of a topic
that is found to be difficult. The latter is an encyclopedic reference covering
almost all methods and giving many references. The principal “error” to
watch out for in these books is in the interpretation of the big-oh symbol.
An equation will be given containing a perturbation parameter ¢ and a
constant control parameter 4, and it will be stated that when 4 is O(1),
one method should be used, but that this method “breaks down” when A
is O(e), and then another method (perhaps a rescaling) should be used.
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Of course, it is impossible for a constant to be O(¢), no matter how small
it may be, so the statement is entirely meaningless. The correct statement
is that the first method is uniformly valid for A in any compact set (closed
bounded interval) not containing zero, whereas the second is uniformly
valid for 4 in a shrinking e-dependent interval whose length is O(g). Once
these matters are clearly understood—and they are explained at length in
Section 1.7 below—it is easy to profit from the books by Nayfeh without
becoming confused.
The book

J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathe-
matics, Springer-Verlag, New York, 1981

covers many of the topics in this book, emphasizing the multiple scale and
matching methods. The range of applications given is much greater than
in this book and includes many difficult examples with partial differential
equations. Most of the work is formal, without error estimates, but it is
quite carefully done. In a different spirit is

Donald R. Smith, Singular Perturbation Theory, Cambridge University
Press, Cambridge, 1985.

This book emphasizes what we call direct error estimation and presents
many up-to-date theorems about the degree of accuracy of multiple scale
and boundary layer correction methods. (This book prefers the correction
method to the essentially equivalent matching method for transition layer
problems.) The last three books are good starting places for a student wish-
ing to go beyond the present book, but they leave unsaid many of the first
principles that are explained here. A reference that includes a variety of
perturbation methods explained from a practical point of view using a
variety of interesting examples is

Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers, McGraw-Hill, New York, 1978.

An extensive discussion of perturbation methods in partial differential
equations (barely touched on in the present text) is given in Chapter 9
(all 214 pages of it!) of

Erich Zauderer, Partial Differential Equations of Applied Mathematics,
Wiley, New York, 1983.

ACKNOWLEDGMENTS

This book would not have been possible without the teachers that encour-
aged and supported me over the years, and the students who used prelim-
inary drafts of portions of the book in their classes. Among the teachers



XX PREFACE

were William Inhelder, who knew his epsilons and deltas and believed
that real mathematics belonged in high school, where it has now been re-
placed by mass-produced advanced placement calculus; Wendell Fleming,
who thought undergraduates deserved differential forms and Lebesgue in-
tegrals; and Jiirgen Moser, who introduced me to perturbation theory and
criticized some of my early attempts at mathematical writing. Among the
students, Chao-Pao Ho did the largest amount of proofreading.

The majority of the graphs (35) were done by Kurt Whitmore, an under-
graduate at Iowa State University, using Mathematica and other software
on a Macintosh SE/30 with a laser printer; a few were done in the same
way by Tony Walker (15), Tom Bullers (9), and Jonathan Schultz (1), also
undergraduates. Only Fig. 4.7.4 was drawn by hand.

JAMES A. MURDOCK



CONTENTS

PREFACE TO THE CLASSICS EDITION Xiii
PREFACE XV
PART | INTRODUCTION TO PERTURBATION THEORY 1
1 ROOT FINDING 3

1.1  The Nature of Perturbation Theory / 3

1.2 Formal Approximations in the Nondegenerate Case / 8

1.3 Examples, Comparisons, and Warning Signs / 14

1.4 Justification and Error Estimates / 26

1.5 The Method of Undetermined Gauges / 33

1.6 Rescaled Coordinates / 44

1.7 Parameters, Uniformity, and Rescaling / 49

1.8 Approximations and Series / 64

1.9 Notes and References / 79
2 REGULAR PERTURBATIONS 83

2.1 Perturbed Second Order Differential Equations / 83

2.2 Physical Examples / 90

2.3 Dimensional Analysis / 96

2.4 Initial Value Problems / 106

2.5 Boundary Value Problems / 115

2.6* Nonlinear Eigenvalue Problems / 121

2.7* Partial Differential Equations / 132

2.8 Notes and References / 133



X CONTENTS

3 DIRECT ERROR ESTIMATION 135

3.1
3.2

Boundary Value Problems for Second Order
Differential Equations / 135

Initial Value Problems for Second Order
Differential Equations / 140

3.3 Initial Value Problems for Nearly Linear Systems / 148
3.4 Notes and References / 154
PART I OSCILLATORY PHENOMENA 1565
4 PERIODIC SOLUTIONS AND LINDSTEDT SERIES 157
4.1 Secular Terms / 157

4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9*

Lindstedt Expansions / 160

Free Conservative Oscillations / 164

Free Self-Sustained Oscillations / 175
Forced Oscillations: General Principles / 186
Harmonic Resonance / 199

Duffing’s Equation / 203

Multiple Scale Approximations Derived from
Lindstedt Series / 216

Partial Differential Equations / 219

4.10 Notes and References / 223

5 MULTIPLE SCALES 227

5.1
5.2
33"
5.4
5.5

5.6*

Overview of Multiple Scales and Averaging / 227
The First Order Two-Scale Approximation / 233
Higher Order Approximations / 242

Periodic Standard Form / 250

The First Order Two-Scale Approximation in Periodic
Standard Form and Its Justification / 262

Partial Differential Equations / 270

5.7 Notes and References / 273
6 AVERAGING 275
6.1 First Order Averaging / 275

6.2
6.3
6.4
6.5*
6.6*

6.7

Justification of First Order Averaging / 281
Existence and Stability of Periodic Solutions / 293
Forced Duffing and Van der Pol Equations / 302
Higher Order Averaging / 315

Angular Standard Form, Coupled Oscillators,

and Small Divisors / 324

Notes and References / 337



