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Preface

Orthogonal polynomials play a prominent role in pure, applied, and computational mathematics,
as well as in the applied sciences. It is the aim of the present volume in the series “Numerical
Analysis in the 20th Century” to review, and sometimes extend, some of the many known results
and properties of orthogonal polynomials and related quadrature rules. In addition, this volume
discusses techniques available for the analysis of orthogonal polynomials and associated quadrature
rules. Indeed, the design and computation of numerical integration methods is an important area in
numerical analysis, and orthogonal polynomials play a fundamental role in the analysis of many
integration methods.

The 20th century has witnessed a rapid development of orthogonal polynomials and related quadra-
ture rules, and we therefore cannot even attempt to review all significant developments within this
volume. We primarily have sought to emphasize results and techniques that have been of significance
in computational or applied mathematics, or which we believe may lead to significant progress in
these areas in the near future. Unfortunately, we cannot claim completeness even within this limited
scope. Nevertheless, we hope that the readers of this volume will find the papers of interest and
many references to related work of help.

We outline the contributions in the present volume. Properties of orthogonal polynomials are
the focus of the papers by Marcellan and Alvarez-Nodarse and by Freund. The former contribu-
tion discusses “Favard’s theorem”, i.e., the question under which conditions the recurrence coef-
ficients of a family of polynomials determine a measure with respect to which the polynomials
in this family are orthogonal. Polynomials that satisfy a three-term recurrence relation as well as
Szegd polynomials are considered. The measure is allowed to be signed, i.e., the moment ma-
trix is allowed to be indefinite. Freund discusses matrix-valued polynomials that are orthogonal
with respect to a measure that defines a bilinear form. This contribution focuses on breakdowns
of the recurrence relations and discusses techniques for overcoming this difficulty. Matrix-valued
orthogonal polynomials form the basis for algorithms for reduced-order modeling. Freund’s con-
tribution to this volume provides references to such algorithms and their application to circuit
simulation.

The contribution by Peherstorfer and Steinbauer analyzes inverse images of polynomial map-
pings in the complex plane and their relevance to extremal properties of polynomials orthogonal
with respect to measures supported on a variety of sets, such as several intervals, lemniscates, or
equipotential lines. Applications include fractal theory and Julia sets.

Orthogonality with respect to Sobolev inner products has attracted the interest of many re-
searchers during the last decade. The paper by Martinez discusses some of the recent developments

0377-0427/01/$ - see front matter (©) 2001 Elsevier Science B.V. All rights reserved.
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in this area. The contribution by Lopez Lagomasino, Pijeira, and Perez Izquierdo deals with or-
thogonal polynomials associated with measures supported on compact subsets of the complex plane.
The location and asymptotic distribution of the zeros of the orthogonal polynomials, as well as
the nth-root asymptotic behavior of these polynomials is analyzed, using methods of potential
theory.

Investigations based on spectral theory for symmetric operators can provide insight into the analytic
properties of both orthogonal polynomials and the associated Padé approximants. The contribution
by Beckermann surveys these results.

Van Assche and Coussement study multiple orthogonal polynomials. These polynomials arise
in simultaneous rational approximation; in particular, they form the foundation for simultaneous
Hermite—Padé approximation of a system of several functions. The paper compares multiple orthog-
onal polynomials with the classical families of orthogonal polynomials, such as Hermite, Laguerre,
Jacobi, and Bessel polynomials, using characterization theorems.

Bultheel, Gonzélez-Vera, Hendriksen, and Njastad consider orthogonal rational functions with pre-
scribed poles, and discuss quadrature rules for their exact integration. These quadrature rules may
be viewed as extensions of quadrature rules for Szegé polynomials. The latter rules are exact for
rational functions with poles at the origin and at infinity.

Many of the papers of this volume are concerned with quadrature or cubature rules related to
orthogonal polynomials. The analysis of multivariable orthogonal polynomials forms the foundation
of many cubature formulas. The contribution by Cools, Mysovskikh, and Schmid discusses the con-
nection between cubature formulas and orthogonal polynomials. The paper reviews the development
initiated by Radon’s seminal contribution from 1948 and discusses open questions. The work by Xu
deals with multivariate orthogonal polynomials and cubature formulas for several regions in R¢. Xu
shows that orthogonal structures and cubature formulas for these regions are closely related.

The paper by Milovanovic deals with the properties of quadrature rules with multiple nodes. These
rules generalize the Gauss-Turan rules. Moment-preserving approximation by defective splines is
considered as an application.

Computational issues related to Gauss quadrature rules are the topic of the contributions by Ehrich
and Laurie. The latter paper discusses numerical methods for the computation of the nodes and
weights of Gauss-type quadrature rules, when moments, modified moments, or the recursion coef-
ficients of the orthogonal polynomials associated with a nonnegative measure are known. Ehrich
is concerned with how to estimate the error of quadrature rules of Gauss type. This question is
important, e.g., for the design of adaptive quadrature routines based on rules of Gauss type.

The contribution by Mori and Sugihara reviews the double exponential transformation in numerical
integration and in a variety of Sinc methods. This transformation enables efficient evaluation of the
integrals of analytic functions with endpoint singularities.

Many algorithms for the solution of large-scale problems in science and engineering are based
on orthogonal polynomials and Gauss-type quadrature rules. Calvetti, Morigi, Reichel, and Sgallari
describe an application of Gauss quadrature to the computation of bounds or estimates of the Eu-
clidean norm of the error in iterates (approximate solutions) generated by an iterative method for the
solution of large linear systems of equations with a symmetric matrix. The matrix may be positive
definite or indefinite.

The computation of zeros of polynomials is a classical problem in numerical analysis. The contri-
bution by Ammar, Calvetti, Gragg, and Reichel describes algorithms based on Szegé polynomials.
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In particular, knowledge of the location of zeros of Szegd polynomials is important for the analysis
and implementation of filters for time series.
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Polynomial zerofinders based on Szegd polynomials
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Abstract

The computation of zeros of polynomials is a classical computational problem. This paper presents two new zerofinders
that are based on the observation that, after a suitable change of variable, any polynomial can be considered a member
of a family of Szegd polynomials. Numerical experiments indicate that these methods generally give higher accuracy than
computing the eigenvalues of the companion matrix associated with the polynomial. (©) 2001 Elsevier Science B.V. All
rights reserved.

Keywords: Szego—Hessenberg matrix; Companion matrix; Eigenvalue problem; Continuation method; Parallel computation

1. Introduction

The computation of the zeros of a polynomial
Y(z)=z"+a, 2" '+ +ouz+a, o €C, (1)

is a fundamental problem in scientific computation that arises in many diverse applications. The
conditioning of this problem has been investigated by Gautschi [8,9]. Several classical methods for
determining zeros of polynomials are described by Henrici [17, Chapter 6] and Stoer and Bulirsch
[26, Chapter 5]. A recent extensive bibliography of zerofinders is provided by McNamee [21].
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Among the most popular numerical methods for computing zeros of polynomials are the Jenkins—
Traub algorithm [18], and the computation of the zeros as eigenvalues of the companion matrix

’—0 0 — 0y
1 0 0 — 0
1 0 0 —u
C,, _ c crxn (2)
1 0 — -2
_0 1 — 0, h

associated with the polynomial (1) by the QR algorithm after balancing; see Edelman and Murakami
[7] and Moler [22]. Recently, Goedecker [10] compared these methods and found the latter approach
to be competitive with several available implementations of the Jenkins—Traub algorithm with regard
to both accuracy and execution time for polynomials of small to moderate degree.

This paper describes two new methods for computing zeros of polynomials. The methods are
based on the observation that, after a change of variable, any polynomial can be considered a
member of a family of Szegd polynomials. The new zerofinders use the recursion relation for the
Szeg6 polynomials, which are defined as follows. Let » be a nondecreasing distribution function
with infinitely many points of increase on the unit circle in the complex plane and define the inner
product

(f,g):z%/lf(z)@dw(t), zi=exp(it), i:=v/—1, (3)

for polynomials f and g, where the bar denotes complex conjugation. We assume for notational
convenience that dw(¢) is scaled so that (1,1) = 1. Introduce orthonormal polynomials with re-
spect to this inner product, ¢, ¢y, P, ..., where ¢; is of degree ; with positive leading coefficient.
These polynomials are known as Szegé polynomials and many of their properties are discussed by
Grenander and Szeg6 [16]. In particular, they satisfy the recursion relation

¢()(3) = ¢(§(:) =1

01 @rr(z) = 202) + 71 95(2). j =012 .on — 1,

0in19,1(2) =7,,,20,(z) + ¢;(2), (4)
where the recursion coefficients y;,, and the auxiliary coefficients o;,, are defined by

. (@1

Vi = 5,

=0l —|yal’), j=012,...,

041 =0;6;1, Og=0p=1. (5)
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It follows from (4) that the auxiliary polynomials ¢; satisfy

¢:(z)=2'¢ (1/2). (6)

The zeros of the Szeg6 polynomials are strictly inside the unit circle and all recursion coefficients
7, are of magnitude smaller than one; see, e.g., [1,16]. The leading coefficient of ¢; is 1/0;.

The first step in the new zerofinders of this paper is to determine recursion coefficients {y,}
such that the Szegd polynomial ¢, satisfies

0, hu(0) = mith(2), (7

where

n
J=172

C=mz+n, (8)

and the constants 1, and 5, are chosen so that the zeros z; of |, are mapped to zeros (; of ¢, inside
the unit circle. We refer to this change of variable as a rescaling of the monic polynomial ,(z). Its
construction is discussed in Section 2. Thus, the problem of determining the zeros of 1, is reduced
to the problem of computing the zeros of a Szegd polynomial of degree n. Section 3 considers two
methods for this purpose, based on a matrix formulation of the recursion relation (4). This gives
an n x n upper Hessenberg matrix whose eigenvalues are the zeros of ¢,. We refer to this matrix,
which is described in [11], as the Szegd—Hessenberg matrix associated with ¢,. Having computed
the eigenvalues {; of this matrix, we use the relation (8) to compute the zeros z; of ..

A third method for computing the zeros of ,(z) is to use the power-basis coefficients of the
monic Szegd polynomial @,({):=0d,¢,({) of (7) to form the companion matrix associated with @,,
compute its eigenvalues, and transform these back to the z-variable using (8). In other words, to
use the companion matrix of the rescaled monic polynomial @, instead of that of . This method
is included in the numerical results we report in Section 4.

Section 4 compares the use of the QR algorithm with balancing for computing the eigenvalues of
the Szeg6—Hessenberg, the companion matrix (2) of i, and the companion matrix of the rescaled
polynomial ¢,. We note in passing that these are all upper Hessenberg matrices. Balancing is
commonly used for improving the accuracy of the computed eigenvalues; see [7] for a discussion on
balancing of the companion matrix. In our experiments we found that when the parameters », and
1> for the rescaling are chosen so that all zeros of ¢, are inside the unit circle and one zero is close
to the unit circle, the computed eigenvalues of the Szego—Hessenberg matrix and of the companion
matrix of the rescaled polynomial (7) generally provide more accurate zeros of y, than those of
the companion matrix of . This rescaling is achieved by application of the Schur—Cohn test as
described in Section 3. Numerous computed examples, some of which are reported in Section 4,
indicate that computing eigenvalues of the Szegd—Hessenberg matrix after balancing often gives the
zeros of ), with higher accuracy than computing eigenvalues of the companion matrix of the scaled
polynomial (7) after balancing. Both methods, in general, give higher accuracy in the computed
zeros than computing the zeros of 1, as eigenvalues of the balanced companion matrix.

The other zerofinder for Szegd polynomials discussed in Section 3 is the continuation method
previously introduced in [2]. For many polynomials ,, this method yields higher accuracy than the
computation of the eigenvalues of the associated companion or Szegé—Hessenberg matrices. Section
4 presents numerical examples and Section 5 contains concluding remarks.
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2. Computation of Szegé polynomials

Given a polynomial y,(z) in power-basis form (1), we compute the recursion coefficients {y;}"_,
of the family of Szegd polynomials {¢;}"_,, chosen so that ¢, satisfies (7), by first transforming
the polynomial s, so that the average of its zeros vanishes. Then we determine a disk centered at
the origin that contains all zeros of the transformed polynomial. The complex plane is then scaled
so that this disk becomes the unit disk. In this fashion, the problem of determining the zeros of
the polynomial i, has been transformed into an equivalent problem of determining the zeros of a
polynomial with all zeros in the unit disk. We may assume that the latter polynomial has leading
coefficient one, and identify it with the monic Szeg6 polynomial @, = J,¢,. Given the power-basis
coefficients of @,, the recursion coefficients of the family of Szegd polynomials {¢,}" , can be
computed by the Schur—Cohn algorithm. The remainder of this section describes details of the
computations outlined.

Let {z;}/_, denote the zeros of Y, and introduce the average of the zeros

1 n
iy )
n i

We evaluate this quantity as p = —o,_;/n, and define the new variable Z =z — p. The polynomial
¥, (2):=Y,(z) can be written as

l//”( ):5 ,,,ﬁ_” _+ +xl +10 (10)

n—1

The coefficients {4, }" 4 can be computed from the coefficients {o;,} "y in (/(n*) arithmetic operations.

We now scale the Z-plane in two steps in order to move the zeros of l/}” inside the unit circle.
Our choice of scaling is motivated by the following result mentioned by Ostrowski [23].

Proposition 2.1. Let y, be a polynomial of degree n of the form
Zn(z)::,” +/fn~22”72 + "'+Blz+ﬂl’)v (ll)
and assume that

max |f;|=1.

0<j<n—2
Then all zeros of y, are contained in the open disk {z:|z| < 3(1 + V5)} in the complex plane.
Proof. Let z be a zero of y, and assume that |z| > 1. Then

=B, 22" = = iz — P,
and it follows that

n—2 Iln I

s Sl =

=0
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i

This inequality can be written as
2P = - D - L (12)
Since |z|*—|z|—1=(|z|— 1(1=V/5))(|z| = 1(1+V/5)), inequality (12) can only hold for |z| < L(1+/3).
U

After the change of variable Z:=¢Z, where ¢ > 0 is chosen so that

max o’|4, ;| =1,
“s)sn

the polynomial I/;”(E)Z———O'”l/;"(f) satisfies the conditions of the proposition.
Define the scaling factor

2
= 13
I+V5 v
By Proposition 2.1 the change of variables
(=12 (14)

yields a monic polynomial
D()=1"),(2) (15)

with all zeros inside the unit circle.

We identify @!7' with the monic Szegd polynomial J,¢,, and wish to compute the recursion
coefficients {7,}"_, that determine polynomials of lower degree {¢,}"~) in the same family of Szegd
polynomials; see (4). This can be done by using the relationship between the coefficients of ¢; in
power form and the coeflicients of the associated auxiliary polynomial. Specifically, it follows from

(6) that if

bi(2)=_ Bz’ (16)

k=0

then

/
6/ =2 B

k=0
Thus, given the Szegd polynomial ¢, in power form, we can determine the coefficients of the
associated auxiliary polynomial ¢; in power form and apply the recursion formula (4) “backwards”
in order to determine the recursion coefficient y, and the coefficients of the polynomials ¢,_, and
¢, , in power form. In this manner we can determine the recursion coefficients y; for decreasing
values of the index ;.

The Schur—Cohn algorithm, see, e.g., Henrici [17, Chapter 6], is an implementation of these com-
putations. The algorithm requires ('(n”) arithmetic operations to determine the recursion coefficients
{y;}", from the representation of ¢, in power form (16).

We remark that the Schur—Cohn algorithm is known for its use in determining whether a given
polynomial, in power form, has all zeros inside the unit circle. In this context it is known as the
Schur—Cohn test; see [17, Chapter 6]. All zeros being strictly inside the unit circle is equivalent
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with all recursion coefficients {y;}_, being of magnitude strictly smaller than one. We will return
to this property of the recursion coefficients in Section 3.

Perhaps the first application of the Schur—Cohn algorithm to the computation of zeros of poly-
nomials was described by Lehmer [19], who covered the complex plane by disks and used the
Schur—Cohn test to determine which disks contain zeros of the polynomial. Lehmer’s method can
be viewed as a generalization of the bisection method to the complex plane. It is discussed in [17,
Chapter 6].

3. The zerofinders

We present two zerofinders for ¢, and assume that the recursion coefficients {y;}'_, as well as
the auxiliary coefficients {g;}/_, are available.

3.1. An eigenvalue method
Eliminating the auxiliary polynomials ¢; in the recursion formula (4) yields an expression for

¢;+1 in terms of Szegd polynomials of lower degree. Writing the expressions for the first n + 1
Szego polynomials in matrix form yields

[D0(2), §1(2),- ... Pu—1(2)]H, = z[o(2), §1(2), ..., Pu—1(2)] = [0,....0,Pu(2)], (17)
where
[=n —amn —aioen 01 Op1Vn W
o —Nr2 1027 T —$102** Ou1 Y
o~ X e
H, = . ' e Ccm” (18)
On—2 —Vp—2Vn—1 —Fne2Tn—17n
| 0 O ~ VetV

is the Szeg6—Hessenberg matrix associated with the Szegd polynomials {¢,}"_,; see [11]. Eq. (17)
shows that the eigenvalues of the upper Hessenberg matrix H, are the zeros of ¢,. Thus, we can
compute the zeros of ¢, by determining the eigenvalues of H,.

Let {;, 1<j<n, denote the zeros of ¢,. The scaling parameters 1, and 5, in (8) are chosen so
that all zeros of ¢, are inside the unit circle. However, for some polynomials ,, the scaling may
be such that

Kk,;= max |{;|<1.

1<j<n
We have noticed that we can determine the zeros of ;, with higher accuracy when the disk is rescaled
to make k, close to one. Such a rescaling is easy to achieve by repeated application of the Schur-
Cohn test as follows. Instead of scaling Z by the factor (13) in (14), we scale Z by :=v2/(14+V5)
and apply the Schur—Cohn test to determine whether all zeros of the scaled polynomial (15) so
obtained are inside the unit circle. If they are not, then we increase the scaling factor 7 in (14) by
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a factor At:=(2/(1 +v/5))''* and check whether the (re)scaled polynomial (15) obtained has all
zeros inside the unit circle. The scaling factor t is increased repeatedly by the factor At until the
polynomial (15) has all its zeros inside the unit circle. On the other hand, if the polynomial (15)
associated with the scaling factor 1= V2/(1++/5) has all zeros inside the unit circle, we repeatedly
decrease 7 by a factor (A7)~ until a scaling factor 7 has been determined, such that all zeros of
the polynomial @ are inside the unit disk, but at least one zero of @{" =" is not. Our choice of
scaling factor 7 in (14) assures that the monic polynomial (15) has all its zeros inside the unit circle
and (at least) one zero close to the unit circle.

The scaling factors t in (14) for the computed examples reported in Section 4 have been deter-
mined as described above. In our experience, the time spent rescaling the disk is negligible compared
to the time required to compute the eigenvalues of H,, because each rescaling only requires ('(n*)
arithmetic operations.

After determining the scaling factor t as described above and computing the recursion coefficients
{7,}1_, via the Schur—Cohn test, we form the Szeg6—Hessenberg matrix (18), balance it, and compute
its eigenvalues using the QR algorithm.

3.2. A continuation method

Similarly as in the method described in Section 3.1, we first determine the recursion coefficients
of the Szegd polynomials {¢,}" , such that Eq. (7) holds, as described above. We then apply the
continuation method for computing zeros of Szegd polynomials developed in [2]. In this method the
Szego—Hessenberg matrix (18) is considered a function of the last recursion parameter 7,. Denote
this parameter by ¢ € C and the associated Szego—Hessenberg matrix by H,(¢). Thus, we write the
matrix (18) as H,(7,). When |7| = 1, the Szeg6—Hessenberg matrix H,(t) is unitary. Assume that
7, # 0. Then H,(7,/|7.]) is the closest unitary matrix to H,(7,); see [2] for details. The continuation
method for computing zeros of Szegd polynomials consists of the following steps:

(1) Compute the eigenvalues of the unitary upper Hessenberg matrix H,(7,/|7.])-
(ii) Apply a continuation method for tracking the path of each eigenvalue of the matrix H,(¢) as ¢
is moved from 7,/|7,| to 7,.

Several algorithms that require only (' (n”) arithmetic operations for the computations of Step (i) are
available; see, e.g. [4—6,12—15]. If the coeflicients «; in (1) are real, then the method discussed in [3]
can also be applied. These methods compute the eigenvalues of H,(7,/|y,|) without explicitly forming
the matrix elements. In the numerical experiments reported in Section 4, we used the implementation
[4,5] of the divide-and-conquer method described in [14,15]. The computations required for this
method can readily be implemented on a parallel computer. This may be of importance in the
application of the zerofinder in real-time filter design; see, e.g., Parks and Burrus [24] and references
therein for more on this application of polynomial zerofinders.

We have found that for many polynomials i,, the continuation method determines the zeros with
higher accuracy than the method discussed in Section 3.1. The continuation method determines the
zeros of the Szegd polynomial ¢, close to the unit circle particularly rapidly. However, our present
implementation of the continuation method may fail to determine all zeros for some polynomials 1,
when the pathfollowing is complicated by (numerous) bifurcation points. These cases are easy to
identify; see [2] for a discussion and remedies.
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Table 1
Ten polynomials of degree n =15 with zeros in D,

Differences: CB SHB CM CBS

6.67E—05 4.89E—-06 4.57E-06 6.82E—06
1.66E—03 7.57E-05 5.49E—-05 2.11E-04
1.20E—-01 3.06E-03 — 1.83E—02
8.41E-04 2.45E-05 3.91E-05 6.22E—-04
9.66E—04 5.88E—05 5.82E-05 1.51E-04
2.75E—-05 5.20E-07 1.79E—-07 2.40E—06
3.34E-05 5.75E—-06 2.71E-07 2.05E—-05
1.67E—05 2.85E—-06 2.25E—-06 5.52E—05
2.72E—-04 6.60E—06 7.48E—07 3.77E-05
7.60E—05 1.16E—06 7.40E-07 3.30E—-06

Averages: 1.24E—02 3.24E—04 1.79E—05 1.94E—03

Residuals: CB SHB CM CBS WUy
3.85E—06 9.06E—07 4.89E—-07 1.10E—06 6.94E—07
3.31E-07 9.68E—08 2.05SE—08 1.15E—-07 1.47E—-08
3.16E—05 1.30E—05 — 2.41E-05 5.80E—07

2.48E—-06 9.15E—-07 3.16E-07 1.47E—-06 6.62E—08
5.24E—-06 6.74E—07 1.18E—06 1.50E—-06 3.58E-07
8.64E—-08 2.13E-08 1.47E—-08 4.12E—08 2.18E—09
1.87E—-06 6.88E—07 5.66E—-07 8.80E—07 2.92E-08
2.93E-06 2.48E—06 2.76E—07 2.71E—-06 4.34E—08
2.14E-07 7.87E—08 6.35E—08 3.23E-08 6.32E—-09
1.07E—06 4.44E—-07 9.72E—-08 9.11E-07 2.11E-08

Averages: 4.97E-06 1.93E—06 3.36E—07 3.28E—06 1.82E—07
Differences Residuals
CB 0 0
SHB 10 2 10 2
CM 9 8 8 9 8 7
CBS 9 0 1 0 10 1 2 1

We remark that other continuation methods also are available, such as the method proposed by Li
and Zeng [20] for computing the eigenvalues of a general Hessenberg matrix. This method does not
use the structure of the Hessenberg matrices (18), i.e., the fact that the last recursion coefficient 7, is
a natural continuation parameter. However, it may be possible to apply some techniques developed
in [20] to improve the performance of the continuation method of this paper; see [2] for a discussion
and references to other continuation methods.



