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Preface

Numerical Methods for Mathematics, Science, and Engineering, Second Edition,
provides a rudimentary introduction to numerical analysis for either a single course or a
year-long sequence and is suitable for undergraduate students in mathematics, science,
and engineering. Ample material is presented so that instructors will be able to select
topics appropriate to their needs. It is assumed that the reader is familiar with calculus and
has taken a structured programming language such as BASIC, C, FORTRAN, or Pascal.

Students of all backgrounds enjoy numerical methods and this is kept in mind
throughout the book. A variety of examples and problems sharpen one’s skill in both the
theory and practice of numerical analysis. Computer calculations are presented in the form
of tables and graphs whenever possible so that the resulting numerical approximations are
easier to interpret. Many figures for this second edition were obtained by using the
software Mathematica™ . The algorithms for the various numerical processes are given in
pseudo-code and are easy for students to translate into BASIC, C, FORTRAN, or Pascal.
The structure of the algorithms makes them easy to adapt to a programming environment
such as MAPLE, Mathematica™, or MATLAB™.

Emphasis is placed on understanding why numerical methods work and their
limitations. This is not easy for a first course; it involves a balance between theory, error
analysis, and readability by students. An error analysis for each method is presented in a
fashion that is appropriate for the method at hand and yet does not turn off the reader. A
mathematical derivation for each method is given that uses elementary results and builds
the student’s understanding of numerical analysis. Computer assignments implementing
the algorithms give students an opportunity to practice their skills at scientific
programming.

ix
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Preface

Shorter numerical exercises can be carried out with a pocket calculator/computer,
but others can be done more efficiently by computer. I have tried to be flexible on this
issue and do not specify the precise hardware that must be used to solve any given
problem. It is left for instructors to guide their students regarding the pedagogical use of
numerical computations. Instructors must make assignments that are appropriate to the
availability of computing resources for their particular courses.

The use of numerical analysis hardware, software packages, and libraries is
encouraged. Sometimes the phrase ‘‘use a computer’’ occurs in an exercise. This must be
interpreted in view of a school’s particular learning environment. Instructors have the
flexibility to permit their students to use the automatic root-finding and numerical
integration routines found on some pocket calculator/computers or to use other popular
software such as MathCad™, MATLAB™, Mathematica™, and IMSL™. Also, algo-
rithms in the text are available in MATLAB™, FORTRAN, and Pascal and Mathemat-
ica™ notebooks for both IBM PC-compatible computers and APPLE Macintosh
computers. These materials can be used to assist students in performing their ‘‘numerical
experiments.’’
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Preliminaries

Consider the function f(x) = cos(x), its derivative f'(x) = —sin(x), and the integral
F(x) = sin(x). These formulas were studied in calculus. The former is used to determine
the slope m = f'(x,) of the curve y = f(x) at a point (x,., f(x,)), and the latter is used to
compute the area under the curve for a = x = b.

The slope at the point (77/2, 0) is m = f'(7/2) = —1 and can be used to find the
tangent line at this point [Figure 1.1(a)]:

T LT T T
wn =mx— =)+ 0=f(5)x - 3| = —x + =
Sun = m{x = 5) + 0= f(F)x = F) = —x + 3

1.04
054 Y =cos(x)

0.0 T T T T X
0.5 1.0 1.5 2.0

Figure 1.1 (a) The tangent line to the
curve v = cos(x) at the point (77/2, 0).




2 Chap. 1 Preliminaries

Figure 1.1 (b) The area under the curve
y = cos(x) over the interval [0, 7/2].

The area under the curve for 0 = x = 77/2 is computed using an integral [Figure 1.1(b)]:
area = ["“cos(o) dx = F(g) - F(0) = sin(%) —0=1

These are some of the results that we will need to use from calculus.

1.1 REVIEW OF CALCULUS

It is assumed that the reader is familiar with the notation and subject matter covered in the
undergraduate calculus sequence. This included the topics real and complex numbers,
continuity, limits, differentiation, integration, sequences, and series. Throughout the
book we refer to the following results. They are illustrated with numerical examples that
are characteristic of the study of numerical analysis.

Limits and Continuity

Definition 1.1.  Assume that f(x) is defined on the set S of real numbers. Then f
is said to have the limit L at x = x,, and we write

lim f(x) = L, (1)

if given any € > 0, there exists a 8 > 0 such that whenever x € S,
0<|x— x| <& impliesthat |f(x) — L| <e.
When the A-increment notation x = x, + & is used, equation (1) is equivalent to
Iling)f(x(, + h) = L. (2)
Definition 1.2. Assume that f(x) is defined on a set S of real numbers and let
Xo € S. Then f'is said to be continuous at x = x, if

lim f(x) = f(xo). (3)

X=X,
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f(xo) +€

f(xo)

f(xo)- €

0.1
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The function f is said to be continuous on § if it is continuous at each point x € S. The
notation C(S) stands for the set of all functions continuous on S. When S is an interval,
the parentheses in this notation are omitted (e.g.. the set of all functions continuous on the
closed interval [a, b] is denoted C|a, b]). When the h-increment notation x = x, + A is
used, equation (3) is equivalent to

,“}_'}?)f(»"u + h) = f(xo). (4)

For example, consider f(x) = cos(x) — V272 over [0, 0.6] and the value x, = 0.4
with the corresponding function value y, = f(x,) = f(0.4) = 0.21395. For illustration, let
us choose the tolerance as € = 0.04 and determine the corresponding §. If x is restricted
to lie in the interval 0.27998 < x < 0.49270, the function value satisfy

flxy) — € = 0.17395 < f(x) < 0.25395 = f(x,) + €.

Thus for € = 0.04 we choose & = min{0.4 — 0.27998, 0.49270 — 0.4} = min{0.12002,
0.09270} = 0.09270. Points on the portion of the graph y= f(x) above the interval [x, —
3, x, + 8] = [0.30730, 0.49270] will have y-coordinates that lie in [y, — €, vy, + €] =
[0.17395, 0.25395]. This portion of the graph is highlighted in Figure 1.2.

y

y =1(x)

I
1
1
I
I
I
I
1 X Figure 1.2 Investigating the continuit
02 x-8 04 x+8 06 y B 2

0 0 . of f(x) = cos(x) — V272 at X, =04

Definition 1.3.  Suppose that {x,},_, is an infinite sequence. Then the sequence is
said to have the limit L, and we write

lim x, = L, (5)

n—x
if given any € > 0, there exists a positive integer N = N(e) such that
n > N implies that |v, — L| < e.

When a sequence has a limit, we say that it is a convergent sequence. Another
popular notation is that x,, — L as n — 2. Equation (5) is equivalent to

lim (L — x,) = 0. (6)

n—x

Thus we can view the sequence €, = L — x, as an error sequence.
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For example, if x, = [2n® + n sin())/(n* + 3n + 1), then lim x, = 2, so that
L = 2. The error sequence €, = 2 — x,, tends to zero as n — . Figures 1.3(a) and (b)
shows the behavior of {x,} and {e,}.

X L-x

n n
2.0 L e 04t
15f o 03
1.0 0.2
0.5¢° 0.1 ..
0.0 n 0.0 bRALT T LT PP n

5 10 15 20 25 30 5 10 15 20 25 30

Figure 1.3 (a) A sequence {x,} where L = 2 = Figure 1.3 (b) The error sequence {e,} =
lim x,,. {L — x,} where lim €, =lim L — x, = 0.

n—

Theorem 1.1.  Assume that f(x) is defined on the set § and x, € S. The following
statements are equivalent:

The function f is continuous at x,,. (7
lf hn_] Xp = Xo» then Iln_] f(-xn) = f(.X()). (8)

Theorem 1.2 (Intermediate Value Theorem). Assume that f € Cla, b] and L
is any number between f(a) and f(b). Then there exists a value ¢ with a < ¢ < b such that

fle) = L.

For example, consider f(x) = cos(x — 1) over [0, 1] and the constant L = 0.8. Then
the solution to f(x) = 0.8 over [0, 1] is ¢; = 0.356499. In the interval [1, 2.5] the solution
to f(x) = 0.8 is ¢, = 1.643502. These two cases are shown in Figure 1.4.

d f
=X
e y = f(x)
=L
0.8 4
| |
0.6 ! !
| }
I I
0.4 | |
| |
I |
0.2 : : Figure 1.4 The intermediate value
6.0 | | theorem applied to the function
. T T i X f(x) = cos(x — 1) over [0, 1] and over the
c, 05 1.0 15¢c, 20 25 interval [1, 2.5].
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Theorem 1.3 (Extreme Value Theorem for a Continuous Function). As-
sume that f € C[a, b]. Then there exists a lower bound M, and an upper bound M, and
two numbers x,, x, € [a, b] such that

M, = f(x)) = f(x) = f(x,) = M, whenever x € [a, b]. 9)
We sometimes express this by writing

M, = f(x)) = agxigh{f(X)} and M, = f(x,) = arggéb{f(x)}- (10

Differentiable Functions

Definition 1.4. Assume that f(x) is defined on an open interval containing x,.
Then f is said to be differentiable at x, if

. f() — flxo)

llm ’_—x

X—>Xg X 0

= f'(x0) (11)

exists. When this limit exists it is denoted by f'(x,) and is called the derivative of f at x,.
An equivalent way to express this limit is to use the A-increment notation:

fxo + h) — flxo)
L Rl B i

h—0 h

= f'(xo). (12)

A function that has a derivative at each point in § is said to be differentiable on S.
The number m = f'(x,) is the slope of the tangent line to the curve y = f(x) at (xq, f(xy)).

For example, let f(x) = In(x), then f'(x) = 1/x. For x, = 2 and A = 0.01 we have
the approximation

0.698135 — 0.693147 _ f(2.01) — f(2.00)
0.01 0.01

fud=%zaw%=

_ Sl + b — fx)
L

Theorem 1.4. If f(x) is differentiable at x = x,, then f(x) is continuous at x = x,,.

Theorem 1.5 (Rolle’s Theorem). Assume that f € Cla, b] and f'(x) exists for
all a < x < b. If f(a) = f(b) = 0, then there exists a value ¢, with a < ¢ < b, such that
f'(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume that f € Cla, b] and f'(x)
exists for all a < x < b. Then there exists a number ¢, with a < ¢ < b, such that

&) ~ f@ _

fllo) = b —a (13)



1.0 4
f(b)

0.5 4

f(a) 1

Chap. 1 Preliminaries

For example, consider f(x) = sin(x) over [a, b] = [0.1, 2.1]. Then

f(b) = f@ _ f2.1) — f(0.1) _ 0.863209 — 0.099833
b—a  2.1-0.1 2.1 - 0.1

Using f'(x) = cos(x), the solution to f'(c) = cos(c) = 0.381688 = m is ¢ = 1.179174.
The line that goes through the points (a, f(a)) and (b, f(b)) is y = 0.0998334 +
0.381688(x — 0.1) = 0.0616646 + 0.381688x and the line tangent to the curve at the
point (c, f(c)) is y = 0.924291 + 0.381688(x — 1.179174) = 0.474215 + 0.381688x.
The graphs of f(x) and these two lines are shown in Figure 1.5.

= 0.381688.

m = f'(c)

(c. f(e)

-

-

-7 (b))

- ’f - Figure 1.5 The mean value theorem
(a, f(a)) ; X applied to f(x) = sin(x) over the interval

a 0.5 10 ¢ 15 20 b 0.1, 2.1].

Theorem 1.7 (Extreme Value Theorem for a Diffentiable Function). As-
sume that f € Cla, b] and f'(x) exists for all a < x < b. Then there exists a lower bound
M, and an upper bound M, and two numbers x;, x, € [a, b] such that

M, = f(x)) = fx) = f(xy) = M, whenever x € [a, b]. (14)
The numbers x, and x, occur either at endpoints of [a, b] or where f'(x) = 0.
For example, consider f(x) = 35 + 59.5x — 66.5x> + 15x° over [0, 3]. Then

f'(x) = 59.5 — 133x + 45x* and the solutions to f'(x) = 0 are x;, = 0.54955101 and
X, = 2.4060045. The minimum and maximum values of f over [0, 3] are:

min{ f(a), f(b), f(x,),f(x,)} = min{35, 20, 50.104383, 2.118497} = 2.118497
and
max{ f(a), f(b), f(x,),f(xy)} = max{35, 20, 50.104383, 2.118497} = 50.104383,
respectively. The situation is shown in Figure 1.6.
Theorem 1.8 (Generalized Rolle’s Theorem). Assume that f € Cla, b] and

that £'(x), f"(x), . . . ,f™(x) exist over (a, b) and Xos X1y - - . 5 X, € [a, B If f(x)) =
O0forj=0,1,... ,n, then there exists a value ¢, with a < ¢ < b, such that

f™c) = 0. (15)
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y

(x,f0x))

50

40

(a (@) y = 10x)

30
(b, f(b))
20
10
Figure 1.6 The extreme value theorem
N " . " N +— x  applied to the function f(x) = 35 + 59.5x
0.0 0.5 1.0 1.5 2.0 25 3.0 — 66.5x> + 15x* over the interval [0, 3].
Integrals

Theorem 1.9 (First Fundamental Theorem). If f is continuous over [a, b],
then there exists a function F, called the antiderivative of f, such that

fbf(x) dx = F(b) — F(a) where F'(x) = f(x). (16)

Theorem 1.10 (Second Fundamental Theorem). If fis continuous over [a, b]
and a < x < b, then

d [x _
Efaf(’)d’ f(x). (17)

Theorem 1.11 (Mean Value Theorem for Integrals). Assume that f € Cla, b]
for a = x = b. Then there exists a number ¢ with a < ¢ < b such that

1 (o _
Efﬂf()f)dx flo). (18)

For example, consider f(x) = sin(x) + % sin(3x) over the interval [a, b] = [0, 2.5].
The indefinite integral is F(x) = —cos(x) — 51 cos(3x). The average value for the inte-
gral is:

1
25-0

F(2.5) — F(0.0) _ 0.762629 — (—1.111111) _ 1.873740
2.5 255 2.5

= 0.749496.

[77 e ax =

There are three solutions to the equation f(c) = 0.749496 over the interval [0, 2.5]:
c; = 0.440565, ¢, = 1.268010, and c¢; = 1.873583. The area of the rectangle with base
b — a = 2.5 and height f(c;) = 0.749496 is (b — a)f(c;) = 1.873740 and has the same



