JOHN MOTIL

PROGRAMMING

PRINCIPLES
AN INTRODUCTION

PROGRAMMING
PRINCIPLES
AN INTRODUCTION

7%
-
. ”” 1
-~ ' 2
-7 PLANNING |
-~ Problem 3
Solving A 2
PROGRAMMING P, < e = = e e e o o
PRINCIPLES PROGRAMMING 5
S, Practice 6
DY & Pascal 7
~
~
\\\\\. A
RS
- iB

JOHN MOTIL

CALIFORNIA STATE UNIVERSITY
AT NORTHRIDGE

Allyn and Bacon, Inc.
Boston » Londen Sydney ¢ Toronto

Chagters
OVERVIEW

ALGORITHMS

STRUCTURE
BEHAVICOR

LANGUAGES

BIGGER BLOCKS

OBJECTS

APPLICATIONS

COMPUTERS

PASCAL

Copyright©1984 by John M. Motil, CSUN, Northridge CA 91330.
All rights reserved. No part of the material protected by this
copyright notice may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system,
without written permission from the publisher.

Library of Congress Cataloging in Publication Data

Motil, Jokn.
Programning principles.

Includes index.

l. Electronic digital computers—--Programmwing.
I. Title.

QATE.6.M69 1983 001.64'2 83-11779
ISBN 0-205-08005-7

Printed in the United States of America

10 987 6 5432 89 88 87 86 85 84

Table of Contents
of
PROGRAMMING PRINCIPLES

(detailed contents follow)

PREFACE
0. OVERVIEW: Top-down
1. ALGORITHMS: Representation
2. STRUCTURE: Form
3. BEHAVIOR: Dynamics
4. LANGUAGES: Communicating
5. BIGGER BLOCKS: More, etc.
6. OBJECTS: Data Structures
7. APPLICATIONS: Design

"#A. COMPUTERS: Low Level View
B. PASCAL: a High Level View

Preface

" PROGRAMMING PRINCIPLES

{

'CHAPTER OUTLINE....cceoceesel
GOALS AND NON—GOALS.........2
VIEWS OR BIASES.....0000....4
USES OF THIS BOOK.cecosonoosB
FORM OF THIS BOOK.eoeeeeosoo9
PRODUCTION OF THIS BOOK....l0
SOURCES (Bibliography).....1l1
THANKS (Acknowledgements)..12

PREFACE 1

PREFACE:

PROGRAMMING PRINCIPLES

This book introduces the basic ideas of programmig, and a
structured way of thinking about planning and problem solving.
It is intended for a first course in computing for both
computer science majors and also non-majors.

‘;‘he goal is to develop an ability to create algorithms. A s;m»-goal
is to communicate algorithms, as programs, in a language.
This sub-goal is considerably easier to attain than the main
goal. In fact the sub-goal, of programming in Pascal, is done
in an appendix, whereas the rest of the book is devoted to the
main gcal. Hopefully, it conveys an attitude as well as a
methodology .

The approach is very visual, using many diagrams isuch as flow
block diagrams, flowcharts, data flow diagrams, syntax
diagrams, break-out diagrams). Each pair of pages is written
as a unit (similar to a program mcdule), with a page of
graphics facing a corresponding page of text. The graphics
were done with a computer.

Starting with many exanples from everday life (involving cooking,
business, change-making, calendars, games, e€tc.), this book
creates an "algorithmic" 1logic of actions, showirg how all
algorithms can be created from only four building blocks.

Significant concepts (such as structured programming, top—down
design, data flow, trees, arrays, records) are introduced
simply, in terms of common examples, and then later in terms
of computers. In this way, the important programming concepts
are not confused with the details of computers or programming
languages. .

Practice of programming in the Pascal language js considered in a
long appendix (of almost 100 pages). This can be studied in
parallel with the more general part of the bocok, but preferably
after chapter 3. Computing machines are aiso included briefly
in another appendix.

Many problems, programs, and projects, of varying difficulty, are
included after each chapter.

More detailed descriptions of the above ideas follow.

PREFACE
CHAPTER OUTLINE:

PROGRAMMING PRINCIPLES

0. OVERVIEW: Top-down
provides a "bird's-eye" overview and introduction to the
general ideas of programming <({algorithms, languages,
machines, and systems) showing how they are related.

1. ALGORITHMS: Representations
provides many common examples of algorithms, along with
many different ways of representing them, including
formulas, tables, trees, flowcharts, flow block diagrams,
data flow diagrams.

2. STRUCTURE: Form of Algorithms
considers the basic building blocks and how they can be
interconnected properly to form algorithms.

3. BEHAVIOR: Dynamics of Algorithms
emphasizes the dynamic actions of programs, algorithms
intended for computers.

4. LANGUAGES: Communicating Algorithms
considers concepts common to most high level languages,
emphasizing the similarities in semantics (meaning or
actions) despite the differences in syntax (form or look) .

5. BIGGER BLOCKS: More, Different, Deeper Concepts
describes larger building blocks, more data types, deeper
nests of loops, and more powerful sub-programs.

6. OBJECTS: Data Structures
considers some compound objects (arrays and records) and
some algorithms (such as sorting and searching) for
operating on these data structures.

7. APPLICATIONS: Design, Systems
considers some computer uses (including simulation and
graphics) in business, engineering, and other areas. It
alsc shows various design metlods for larger programs.

Appendices

A. COMPUTERS: R Low Level Machine View
introduces a simple but typical computer. Structuring is
continued in a low level language.

B. PASCAL: Programming Practice
introduces a simple high level proaramming language,
Pascal, which is very similar to most modern programming
languages. Many of the programs of the main text are
shown written in this language. This appendix can be
read in parailel with the text.

2

PRLFACE
GOALS OF PROGRAMMING PRINCIPLES

WHAT The goal of this book is to introduce the basic concepts of programming
and a structured way of thinking about planning, problem solving, and
programming.

WHY The structured approach aims at plans and programs that are easy to read,
understand, write, describe, improve, test, modify, extend, analyse and
evaluate.

WHEN This book is intended for a first course in computing, at an early
university level. It should be suitable for students majoring in computing
science, as well as those majorirg in any other area.)

WHERE The concepts studied here are general, not restricted tc any particular
computer, or language, or system, or application area. There are a great
many examples, mainly’ chosen from everyday 1life, involving paychecks,
calendars, games, statistics, business, cooking, etc.

WHO This book is intended for the beginner. No previous bhackground in
computing is assumed (and in fact may be a disadvantage, for bad habits
are hard to break). Extensive mathematical background is not a
prerequisite, for most of the required mathematics and logic are developed
as necessary . :

HOW The approach taken here could be culled the "systems" view, or "top-down"
view. It proceeds first from the top "big picture”™ view, then through
intermediate refinements, and ultimately deals with the details.

NON-GOALS

It may be significant to realize what goals were not attempted here (although
some of the non-goals may have been achieved) .

This book is not intended as a language training mahual,
although a language, Pascal, is introduced in some depth.
This book does not emphasize training in a skill,
although some skills are acquired in the learning process.
This book is not merely a collection of techniques or tricks,
although some techniques are encountered within the general unity.
This book is not a picture-book survey of computers,
although it does have considerable graphics.
This book is not a glorified glossary of computer "buzz words,"
although some vocabulary is introduced tc describe the concepts.

This book is not a study of the hardware aspects of computers,
although some computer organization is briefly covered.

This book is intended for serious students t¢ develop a view of planning,
problem solving and programming using computers at a high human level.

PREFACE

VIEWS or Biases

WE

Thie book is based on a few simple premises, views or beliefs
{my biases, if you wisn). They are written so as to secem
obvious, but some have been argued considerably.

s

SHOULD LEARN TO REAL BEFORE WE WRIGHT (RITE?)!

The creative activity of writing (be it prose, peoetry, or
programs) should bLegin by reading good writings of others. We
then may .analyse them, criticize them, aporeciate them, and
ultimately wventure to write our own. Unfortunately, many
people like tc start writing programs very quickly, and they
end up forming bad habits.

Here we delay the immediate creation and running of programs
on computers. We start by reading already created ones,
following (or tracing) them. Then we will create algorithms,
study them, modify them, and ultimately code them into a
language and run them on some machines.

A PICTURE IS WORTH 500 WORDS (OR 15 IT 10247?)

Humans tend teo understand graphic or diagrammatic structures
more easily than written text. For that reason, this book
uses many diagrams. In fact almost every second page here
congists of diagrams, with a facing page of text (of wbout 500
words) describing the diagrams. The diagrams and text are
equally important. -

Diagrams often lead to immediate insight. Flowcharts and
flow block diagrams help visualize flow of control. Data flow
diagrams describe flow of data and sub-program: interaction.
Syntax diagrams _define -‘language structure. Data space
diagrams illustrate parameter passing. Break-out diagrams aid
in top-down design. Other diagrams. include: state diegrams,
trees, and two-dimensional traces.

In the past, many programming books have avoided graphics,
often because the diagrams wexe difficult to draw, but with the
aid of computers this difficulty is disappearing. All the
diagrams in this book were done with computers.

FLOWCHARTS SHOULD FLOW (OR ELSE, GO)
. Plowcharts consist of boxes joined by arrows to indicate the

flow of action (or control). These diagrams often work well
for simple structures, but for more complex structures they
could become confusing and prone to errors, . It's just toco
easy to connect an arrow to a wrong box.

Here we insist that flowcharts must flow, and we develop a
method and notation to enforce proper flow. Alternatively we
develop a flow block diagram and pseudn-code, both of which
show the flow structure diagrammatically in quite different but
equivalent wavs.

4

PREFACE 5
MORE VIEWS

LEAVE TO THE MACHINE WHAT BELONGS TC THE MACHINE

(dirty details, tedious work, repetition)

To use a computer (or car, or clarinet) properly, it is not
necessary to know all the details of how it is made. A computer is
a very low level device which communicates using the two symbols 0
and 1 only. Humans, however, communicate using the 26 characters
cf the alphabet, the ten decimal digits, punctuation, and various
other symbols. Humans then put together characters into words,
words into sentences, sentences into paragraphs, paragraphs into
chapters, books, etc. .

Here the emphasis will be at the higher, human levels, closer to
our applications. Our programming languages will resemble English,
mathematics, and symbolic logic. We will, however, consider the
computer and its lower level language in sufficient detail to
understand the basic concepts, but we will avoid great depth here.
The computer, and its low level language, is not introduced too
early, for one's first language (be it natural English language, or
a programming language) forms the most powerful tool of thought,
and if the first language is not at a proper high level, then
creativity may be hampered.

Here we will start at a very high diagrammatic level, with flow
charts and flow block diagrams. Later we can use intermediate (or
higher) 1levels involving languages such as Pascal, Basic, or
Fortran. The computer then translates these languages into its
lower level language. !

STRUCTURE IS SOUND (So it yorks. So what?)

The structure, form or organization of any creative project is
important. It is not sufficient that a program works; it should
work well. It should be easy to read, write, describe, understand,
test, analyse and evaluate. It must also do more, as follows.

Creating programs differs from most other creative activities (such
as painting portraits or designing buildings). No one attempts to
touch up someone else's completed painting or simply double the
number of stories in an already existing building. But in
programming there is always the potential for further modification,
so programs should be created with such change in mind. Our
masterpieces are made to be modified. They should be easy to
extend, improve, expand, optimize or transport to other computers.
Structured programs created in a top-down manner are usually better
for such changes.

SIMPLICITY IS SUPREME

There are usually many ways to create anything, so ultimately a
choice must be made. We will invariably choose the simplest,
clearest structured way. Experience has shown that beginners often
like to use very clever, devious, and difficult ways to program,
Ultimately, however, when writing larger programs, the intellectual
challenge of programming becomes too great, and only simplicity can
keep programs at a manageable level.

PREFACE
OTHER VIEWS

There are many other personal beliefs that have been incorporated into
this book. Some of them follow; others I am no longer aware of.
Some views (such as "The best length of any unit is one page"”)
correspond to good programming practice as well as good writing and
teaching practice.

FIRST THE FAMILIAR
This book begins with common everyday algorithms, and only later gets
into computer programs. This way the general fundamental -concepts of
algorithms are not confused with the particular details of computers or
programming languages. The Devil hides in details.

SPIRAL IS SIMPLE

When any concept is introduced here, it is not treated exhaustively in
its entirety at that one point. Instead it is first introduced simply;
then at a later time is extended and returned to again and again.
Each concept 1is revisited in ever-increasing . refinement. This
"spiralling®™ provides for increasing depth, but with breadth for proper
"top-down" perspective. So if a concept is not clear to you at
first, read on; it will get clearer as you proceed.

DUALITY IS DIVINE
Many concepts, not just programming ones, can be viewed in two ways
which are complementary. Some examples are:
‘series vs parallel, general vs particular,
recursion vs iteration, depth vs breadth,
space vs time, wears tie vs forgets belt,
top-down vs bottom-up, intuitive vs logical,
hot vs cool, software vs hatdware.

Although some areas of study seem to prefer a specialization, I
believe programming requires a balanced view: an intuitive, holistic,
spatial, subjective approach for creating programs, and also a
rational, logical, defensive, objective approach for analysing, testing
and optimizing programs. Programming is both an Art and a Science.

ALL THINGS ARE NOT EQUAL

' Not all ideas, concepts, pages and chapters are of equal importance.
The significance of each page is indicated in the table of contents
preceding each chapter. The more important ideas are usually treated
early in a chapter (top—-down). Later in each chapter, there are extra
challenging concepts (marked optional) which are not necessary for
continuing to the next chapters. So if only two-thirds of this book
is to be read, then it is best to read the first two-thirds of each
chapter. Also, chapters are not equally significant, as shown below
where asterisks indicate the relative importance.

* 0. Overview * 5. Bigger Blocks
* 1. Algorithms ** 6. Objects
**% 2. Structure * 7. Applications
*** 3, Behavior A. Computers
* 4. Languages ** B, Pascal

6

PREFACE 7
STILL MORE Y1ILWS

TWO DIMENSIONS ARF BETTER THAN ONL

Many conceots of computing appear to have one dimension, to be strung
out in & line. For example, an algorithm seems to be a long list of
instructions t. ke dJdone step by step, and a computer program seems to
be a lorng linear sequence of symbols. Actually, it is the structure
behind these sequences that is important. It can be brought out by
creating two-dimensional schemes such as break-out diagrams, trees and
two-dimensional traces. Computers may have a single dimension;
humans have many dimensions.

INDENTING 5 IMPORTANT
One way of cepruring the multi-dimensional form of prose, poetry, or
programs 1is ‘_y indenting. In this text a reverse or hanging indent is
used, wits +he wost significant matters at the top and farthest to the
iett; lass significant matters are indented farther to the right to
Show Ui csser levels, A similar indentation is uzed for prograns

S51RS ARE SUPER

The concept «f breaking up parts into sub-parts is extremely
significant. For this reason, the sub-program concept should be
introduced early, before other simpler, but inferior, methods
(involving glon.al variables). Through the use of break-out diagrams
and data flow diagrams, this early emphasis on sub-programs is
possible. Again, the lower details (stacks, parameter-passing
methods, etc.) are postpcned until later.

THERE IS A TIME
Arrays, while not terribly complex, are treated late in this bLook.
They are not necessary at first, but we may still be tempted t¢ u-e
them because of their power. Also, the dual concept of the ar:¢. .
the record, may be more appropriate. There may be no optimal «=:m ¢
introduce some concepts, but there are non-optimal times.

NAMES ARE NICE
References may be made to things by either number or name. Herc,
names are preferred; all numbers look alike. Names are given to waci
chapter, sub-section, page, concept, and even homework prohliem
Giving good names makes things easier to remember, convenient tc refer
to, and helpful to manipulate.

BEWARE BEGINNINGS
This book is intended for beginning students, who are not expected to
cmbark on a computing career immediately after reading this book. A
~drprising number of people believe that everything abcut programming
can be learned 1n a single course. This book aims at providing a good
foundation for continued growth.

Beginners, with their short algorithms and awkward typing, carn be
forgiven tor wusing short variable names. After all, physics ond
mathematics have used single-character names for centuries. The
advantaqe of long names becomes obvious to begmners after they start
writing long programs A compromise is used in this boox: the
smé ler general anorlthms involve short names, but the Pazcal
prcygiram involve longer , meaningful names.

PREFACE
USES OF THIS BOOK

This book has been used in many different ways in various courses,
and in different schools.

Typically, it has been used in an introductory course on algorithms
and programming. It starts with chapters 0 to 3 emphasizing
general algorithms, then "detours" to the Pascal appendix, and
continues with chapters 4, 5 and 6, done in parallel with the
remaining Pascal. Then some of the larger applications of
chapter 7 are covered. Finally, the course ends with a brief
description of computers and possibly a simulation of a simple
computing machine.

Alternatively, this book has been used in a service course (COMP
101) to introduce many non-computer majors to programming.
This is done by a shortened version of the above course,
covering the general algorithms and some programming in Pascal.
This course is followed (in a later semester) by a laboratory
experience with emphasis on one particular language (Fortran,
Cobol, Apl, PL/I, Basic, etc.). So, when a student wishes to
learn more than one language, it is not necessary to repeat the
basic principles and algorithms in each language laboratory.

This two semester sequence has much merit. The first course is
a lecture (2 units) on fundamentals, with limited Pascal
programming. The second course is a laboratory (1 unit) with
extensive programming experience. This arrangement separates
the principles (algorithms, problem solving) from the practice
(language, syntax, system "irncantations"), bota c¢f which
require considerable amounts of time. This avoids the terrible
compromises (premature programming, hectic pace, etc.) often
encountered in a first programming course. Of course some
"hackers" would be unhappy, but most studehts can abstain from
the computer (for about a month), if they are convinced of the
importance of this.

Originally, the book served as the basis for three courses: COMP
130SCE (for science and engineering students), COMP :30CSM
(for computing majors) and also COMP 130GEN (for general
education) . The COMP 130SCE course, for example, tended to
introduce the computer very early. Although this seemed
natural (In the beginning was the computer ...), it led to
unfortunate "bottom-up" hahits, so now more algorithme are
introduced before computers.

Also, the compartmentalizing of ccudents according to tne field

of their interest tended to —-esvit in ernhiiiz on that

particular field, rather than on .n: compulin. _opoiCs.
Significantly, this book has alsc been used in a pure a:gorithins

course, with no programminc ..igoace or computer uperisnce.,

There is sufficient intellect 2" content for such a course, but
only the bravest of computing instructors will want o try that
at present.

Additionally, this book has been used by individuals in wvarious
ways: as a course in "Pascal as a second larnguage," as a
"structured" refresher, as a survey of the "algorithmic method®
and as a "top-down" companion to a first course in Pascal.

Undoubtedly other uses of this book are possible.

8

PREFACE
FORM OF THIS BOOK

The form (layout, format, or syntax) of this book differs from that of
most other books. I have tried to reflect the "top-down" view in
the desigr. of the book. It has some of the same form that large
programs have. I realize that I have not been completely successful
in achieving this goal, but, as with most programs, there is room for
modification. I am grateful to the publisher, Allyn and Bacon,
Inc., for cooperation in making this possible.

BOOKS, in general, consist of chapters which are broken into sub-
chapters (sections, parts, etc.) which ultimately are "cut" into
equal-sized segments, called pages. - This arbitrary cutting into
vages often causes pages to start and finish in mid-sentence, a
practice that I £ind annoying (except in novels). It's like
breaking up one long preogram into sub-programs at arbitrary points
(every 50 lines).

CHAPTERS in this book are broken into sections, and this break-out is
shown in front of each chapter. A chapter is "sandwiched" between a
preview at the front and a review following it. A set of problems
follows each chapter.

SECTIONS are further split into smaller segments, called page-pairs.
There may be two to seven of these segments in a section. Seven
(plus or minus two) 1is a "magic" number often encountered in
programming .

PAGE~PAIRS are simply the two pages we face when a book is opened up.
The two pages are created to be complementary; one page consists of
graphics, and the facing page consists of printed text. Each pair
1s levoted to a single, isolated concept.

CONCEPTS do not always fit a page easily. When a concept is small, the
paragraphs are spacecd out te fit thz page, so forming blocks of text,
adding to the readahility. When the concept is large, it is split
into sub-concepts, which in turn have their own page.

PAGES consisting of graphics are found at the left of a page-pair, and
thos= consisting of text are at the right. This is consistent with
tiin “split-brain” theory, which states that left and right sides of a
brain process information differently.

TEXT PAGES are laid out in a structured way. They consist of "blccks”
of text, separated by gaps of white space. Titles are not centered,
but instead are allowed to "hang over," out of the blocks of text.
Centering hides structure; indentation emphasizes it. Page numbers
also hang over the top right of each page for easy reference.

PARAGRAPHS have a reverse indentation, like proar»ms, the better to
show the structure. The first sentence 1is the main or topic
sentence, and the first word in it is also made the main or key
word. This key word, often capitalized, protrudes into the left
margin, so serving as a handle for this concept. This page is an
example of such structure. Notice all the blocks, gaps, white space,
indentation and capitalization.

9

PRODUCTION OF THIS BOCK

Computers were very widely used in the procuction of fi.: LOOK.
They ranged from a microcomputer (Apple II) to o "monster”
computer (CDC Cyber 176-750).

Graphics were produced interactively on a screen, and then run off
cnoe printer. A student, Luls Castro, created the software for
the Apple vomuuter . and then lived with his creatica to produce
most of the graprhics for this book ... almost 200 pacges!

v1> Alanen took part in the initial staoes. My son Jan used
this graphic syvstem to create the syniax diagrams. Joe Xwan

5 1

¢ ¢h1e grapnics tool, making it move Tfriendly" to use.

t

st porticiis of the book were produced oricinally on the Cyber by

Kuth Horgan, and modified over manv versione. ‘“he Runoff
systew was then re-created by Luis Castre Lo conveniently
produce proportionately spaced text. Joe Kwan adapted the
systcm to the Apple computer.

Portability betwesen such diverse systems was accomp!ithed mainly
because all the tools (for graphics, text. indcexing, etc.)
were created in the Pascal language. The Qgrapnics
compatibility among the Spinwriter. Diiablo, and Dataproducts
printers was a pleasant surprise.

Power of this computer production was rather awesom >, I had total
control over every aspect. For example, I <ould specify a
diagram roughly, and Luis would enter it into the systen,
making improvements. Then I could preview ti diagram on a
screen, and refine it further. I could tweak " any line,
moving it as little as a sixtieth of an inch. JFinally, I could
get: & "hard™ copy on paper. To have a humanr artist re-draw a
diagram for any slight change would be prohibitive; to specify a
computer to do it was simple. This graphing tool (GRAPH), for
creating flow block diagrams, is available from the avtihor.

The text part of the book was developed similarly. I woutd specify
the text initially, and Ruth would edit it before =ptering it.
We had many discussions, leading to refinements which were very
easily made to the "soft" copy. The text formzi was also
possible to control in detail. I specified the distas e between
succeesive characters, the "leading" or space between ¢z lines,
and the space (lots of it), between paragraphs (forming blocks
of text). This total control led to a novel 1ndentation
scheme, similar to that used for programs. Incidentaliv, fne
cext in the appendices was not spaced proportionatcly: vou may
wish to compare it to the rest of the book.

complexity of details in such a book could easilv become
overwhelming. Computers again made the complexity meinaueable .,
enabling the dozens of programs, hundreds of pages of text.,
2.0 thousands of graphics to be readily retric-ws 5. modified,
ard again stored.

PREFACE 11
SOURCES (Bibliography)

In this book I have borrowed from many sources. Most of these sources
are at a higher 1level; I have tried to present them at an
introductory level. For this reason, most of the following
references should be read after this book, not along with it.

Programming, in general, is not covered in many books. One of the few
language independent books is "FOUNDATIONS OF COMPUTER SCIENCE",
written by M.S. Carberry, H.M. Khallil, J.F. Leathrum, L.S. Levy,
and published by Computer Science Press.

Pascal is covered in many books, which often purport to cover problem
solving and program design. Most go with very great detail into the
Pascal language, and much less detail in developing the ability to
create algorithms. A concise coverage of Pascal can be found in the
classic "PASCAL USER MANUAL AND REPORT" by K. Jensen and
N. Wirth, published by Springer-Verlag.

Data structures are most appropriately covered after this book. Niklaus
Wirth has also written a book: "ALGORITHMS + DATA STRUCTURES =
PROGRAMS" published by Prentice-Hall. It is concise but at a
rather high level.

Machines are well treated in a book by J. Ullman: "FUNDAMENTAL
CONCEPTS OF PROGRAMMING SYSTEMS" published by Addison-Wesley.
It also links machines to languages.

Languages in general are treated in a unified way using contour diagrams
by E.I. Organick, A.I. Forsythe and R.P. Plummer in their book
entitled "PROGRAMMING LANGUAGE STRUCTURES" published by Academic
Press.

Programming principles of a more theoretical nature are further developed
by W. Wulf, M, Shaw, P. Hilfinger and L. Flon in their book
"FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE" published by
Addison-Wesley.

Design of proarams in a structured we’ is developed by J.D. Warnier in
"LOGICAL CONSTRUCTION OF PROGRAMS". The diagrams developed there
have evolved into the break-out diagrams of this text.

Problems, 777 of them, can be found in the text "GRADED PROBLEMS IN
COMPUTER SCIENCE" by A.D. McGettrick and P.D. Smith, and
published by Addison-Wesley. :

Notation for representing algorithms in flow block form evolved from a
paper by I. Nassi and B. Shneiderman in the ACM SIGPLAN Notices
(Volume 8, Number B8).

Mathematical and engineerinrg systems ccncepts underlying many discrete
structures (Boolean alcebra, discrete probalitity, seguential machines
and stochastic systems) are developed in aok "D TGITAL Y UTLMS
FUNDAMENTALS" written by John Motil, aia cuciishel by McGiaw -Hitl
(hardcover} and Ridgeview Press (paperback) .

PREFACE 12
THANKS (Acknowledgments)

Many persons have contributed to this book, and I wish to thank them
all. None, however, is responsible for any errors. I had total
control over that, and I accept any blame.

First, I must thank Ruth Borgan and Lui: Castro, two very hard-working
pecple, without whom I could not have completed this book. Their
work has been described on a previous page.

Faculty at California State University, Northridge (CSUN) have taught
from many early versions, and offered suggestions, changes, and
encouragement . They include: Jack Alanen, Morteza Anvari, Ronald
Colman, Raymond Gumb, Robert Henderson, Gary Hordemann, Ruth
‘.urgaiw, WUorethv Lanais, Diane Schwartz, Linda Stanberry, and
\ligberto Yu. Raymond Davidson, Steve Gadomski, Philip Gilbert,
Steven Stepan<i, and Fein Turn suffered throuch very early versions.

Other facuity who did no:b tesch thic course also contributed,
inciuding Russell Abbott, Shan Baikataki, Michael Barnes, Fred
Gruenberyer , Kenneth Mocesitt, Dczter Stmuth, and David Salomon.

Part-time faculty also contrituted, especially Richard Kaplan, Robert
Lingard, Georgia Lulovics, Robert McCoard, and Albert Pierce.

Visiting faculty members also taught from this book and provided
differing insights. Thanks to John Van Iwaarden of Hope College,
Michigan, Paul Tavolato from the University of Vienna, and David
Brailsford from the University of Nottingham.

Professors from other departments often audited this course, and
provided unusual feedback. Thanks to Ernest Scheuer of Management
Science, Donald Bianchi of Biology, Edward Hriber and Virgil Metzler
of Engineering, Felix Jumonville and Larry Krock of Physical
Education, Donald Wood of Radio-TV-Film, and Jerrold Gold and Joel
Zeitlin of Mathematics. Richard Truman of Management Science rezad
some early chapters and eliminated many errors. Jetfrey Sicha of
Philosophy was particularly helpful in many ways.

Administrators at CSUN also helped in their own ways despite cwovere
resource problems. Thanks to two deans, Charles Sanders &
A. F. Ratcliffe, and to five department chairs (iamed above) in the
last few years. Sandra Metzger was instrumental in finding

equipment from various local industries. Use of donated eguipment
from Dataproducts and Marketron was appreciated.

Participants in a Faculty Development Program were very helpiul.
especially about pedagogical matters and the instructor's guide.
They include George Lorbeer of Secondary Education, Nathan Weinbe o
of Sociology, Thomas Bader, Thomas Maddux, Alexander Mull:r
Michael Patterson of History. Other participants ~oro (rer
Douglas of Religious Studies, Richard Smith and James " =rcivia ot
Psychology and William ¥Vincent of Physical Education. Additional
faculty included Beverly Grigsby of Misic, John *iller of rianagement
Scicnce, and Robert licreen frow the department of English.

PREFACE
MORE THANKS

Secretaries LuAnne Rohrer and Sally Gamon were very helpful, along with
many student assistants. Nick Dalton spent many hours copying the
graphics. The School technicians, Jack Siano, Bob Allen, Jan
Berreitter, Herb Petzold, and Dennis Tibbetts, provided prompt and
cheerful aid.

Other colleges have tried preliminary versions, and feedback was
appreciated from Margaret Brennan of Glendale Community College, and
Ken Stevens of The College of the Canyons. Graduate and senior
students Darel Roberts and Ken Clark also contributed ideas and
programs.

Reviewers of the manuscript had very helpful advice (some of which I
did not take). Thanks to Gary Ford of Arizona State University,
Madeleine Bates of Bolt Beranek and Newman, and David Boswell of
the University of Waterloo. Very early reviews by Brian Hansche of
Arizona State University were useful. Michael Meehan, my original
editor, was particularly insightful. Other helpful people from Allyn
and Bacon were Gary YFuiven, Doug Hinchey, Nancy Murphy and Paul
Solagua.

Students from many classes were very good at detecting errors.
Encouraged by a small reward for each error or inconsistency, they
helped improve the book. I found it interesting that some errors
and inconsistencies were not detected by hundreds of students over
the years. Some of these imperfections have not been removed in the
spirit of "shaboui™ - nothing is perfect unless it has some
imperfection.

Computer Center staff, directed by Jerry Boles, were coften very helpful.
Thanks to Mona Clark, Gary Cohen, Jeff Craig, Ann Fuller, Joyce
Hayes, J.P. Jones, Nancy Murry, Dave Sansom, Dave Thompson, and
Kurt Webb.

Computer store owners Russ and Gene Sprouse from Rainbow Computing
provided good information and service wher it was badly needed. Lee
Castile of California Press was very helpful with tne final graphics.

I must also acknowledge Stan Kifkin, who {(amoryy other things) initially
introduced me to the concept of Structured Programming, by arranging
for me to attend a short course given by Edsger Dijkstra. There I
was *born again" to programming, which I had previously <ome to
dislike. I also feel privileged to have attended a course taught by
Niklaus Wirth.

v -~ ",'f‘ .
Finally, I must #Hank my family and friends for bearing wiili me during
this "obsession.”

John Motil

13

