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Supercomputing and the Transformation of Science



This picture, adapted from Katsushika Hokusai’s masterpiece ‘“The Grear Wave off
Kanagawa,” artistically displays the spirit of supercomputing. Complex phenomena,
such as waves on the surface of a fluid, are modeled by covering space with a grid and

then solving the laws of physics at discrete points on that grid. The finer the grid, the

closer the numerical simulation is to the actual solutions of the mathematical laws of

nature that govern the physical world.



To the intellectual giants who made

the digital world possible:

Charles Babbage, who created the computer;

John von Neumann, who taught us how to use it;
and Vannevar Bush, who foresaw how computers and
communications would transform science and society.



Preface

A new information reality, parallel to but dis-
tinct from our well-known physical reality, is
emerging. In this digital reality, bits take the
place of the fundamental atoms of the physical
world. Scientific instruments, from telescopes to
microscopes to space probes, are extending our
senses to enormous distances and to tiny scales,
even to other worlds. Yet, instead of producing
analog photographic plates that end up being
stored in a vault, modern sensors record their
discoveries in digital data banks accessible to
researchers anywhere over computer networks.
The mathematical laws of gravity, gas dynamics,
and quantum mechanics—the products of gen-
erations of scientific thought—can now be
solved by digital computers to create numerical
representations of the physical world of orbiting
planets, thunderstorms, and new drugs. These
simulations offer scientists a new means of ex-
ploring nature. Finally, our analog modes of
communication by voice, print, and video are
gradually being replaced by digital modes. Ulti-
mately most of human knowledge will be stored
in a common digital library.

The worldwide acceptance of the personal
computer has given every desktop a window into
the world of digital knowledge. Fiber optic net-
works are creating intricate connections between
millions of desktop computers and the relatively
few supercomputers, the fastest computers that

exist. These same networks tie this computa-
tional infrastructure into the vast archives of
data maintained by industry, government, and
scientific laboratories. This shadow universe of
information, the “cyberspace” of science fiction
novelist William Gibson, is rapidly increasing its
reach. In Supercompuring and the Transformation
of Science, we explore the supercomputers that
are the central powerhouses of this information
space. Our book focuses on three themes: the
evolution of supercomputers, the methodologies
for using them to simulate nature, and their
transformation of virtually every field of science
and engineering.

The supercomputers of today run almost
one trillion times faster than the fastest com-
puter of fifty years ago. For comparison consider
another transformational technology—trans-
portation. Fifty years ago the fastest mode of
transportation had a speed limit of a few hun-
dred miles per hour, whereas today’s inter-
planetary spacecraft attain astonishing speeds
of several hundred thousand miles per hour.
We can now travel a thousand times faster than
we could fifty years ago, yet this speedup is
only one-billionth of the increase in speed
achieved by supercomputers in the same
time!

Because of their speed, supercomputers can
perform huge numbers of computations in a



brief span of time. It is that ability that enables
these machines to create simulations of the nat-
ural world. Mathematics is capable of capturing
the rich phenomenology of nature, and super-
computers are capable of employing this mathe-
matics to generate the billions of numbers nec-
essary to simulate the behavior of natural
phenomena. The rise of computer graphics has
allowed these vast mountains of numbers to be
translated into visual imagery that is more intui-
tively accessible to human beings. Throughout
the book, we have used visual images instead of
traditional equations to capture the essence of a
technical subject.

One of our most challenging tasks as au-
thors was to convey the fundamental idea be-
hind most of the techniques used to adapt the
mathematical equations of theoretical science for
use on supercomputers: that idea is to replace
the continuous world of nature with a model of
that world formed of discrete units. This can be
accomplished by a variety of methods: we can
approximate a fluid by dividing the space it
flows through into a large number of small
boxes, we can represent an engineering device
by a finite set of subelements, or we can simu-
late a galaxy as a large number of gravitating
particles. As we move from the more familiar
world of classical physics into the strange world
of quantum physics, we show how less intuitive
approaches are used to make the complexity of
quantum mechanical systems computationally
tractable.

After clarifying the methodology of super-
computing, we take the reader on a comprehen-
sive tour of its frontier applications. We start
our voyage of discovery with the world of the
quantum and end with the cosmos, following a
course that parallels the organization of physical
reality into a hierarchy of levels of increasing
physical scale. In this hierarchy, atoms build
molecules, which in turn build cells or bulk
materials, which in turn build bodily organs or
manufactured objects or geological structures.
As our book progresses, we move up the hierar-
chy: thus, in between the extremes of the atom
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and the whole universe, we explore the worlds
of biology, engineering, and the environment.

The virtual worlds simulated by supercom-
puters can be probed and measured much more
thoroughly than the physical world. Our explo-
ration of these worlds is already leading to
deeper understandings, and it is also turning the
supercomputer into an instrument of engineer-
ing design. The result is the creation of safer,
cheaper, and more reliable products in less time
than would otherwise be possible. Following its
adoption a decade ago in the petroleum, auto-
mobile, and aerospace industries, supercomput-
ing is now radically altering industries producing
chemicals, pharmaceuticals, consumer products,
and financial services. Furthermore, supercom-
puters are beginning to offer one of the few
techniques for rationally analyzing the problems
confronting our environment. Pollution, exhaus-
tion of natural resources, ozone depletion, and
global warming are but a few of the research
frontiers explored by supercomputing.

As we approach the next century, we can-
not help but wonder how supercomputing will
transform our ability to manipulate the physical
world. Simulations are giving us detailed knowl-
edge of materials and of biological molecules. As
we acquire this knowledge, we will undoubtedly
be able to restructure the traditional substances
and organisms found in nature today. As we
learn how to digitally control the engineering
process from design through manufacturing, we
will radically enhance our abilities to convert
basic materials into finished products. As we
gain detailed and verified models of the ecologi-
cal and environmental systems of the Earth, we
will have vastly greater powers for altering our
world. Our hope is that the ability of computers
to assist human beings in understanding the
complexities of our world will lead to a growth
of wisdom adequate to the challenges created by
these new technologies.

We would like to thank the thousands of
researchers whose pioneering use of supercom-
puters inspired us to write this book. We have
been able to include the work of only a few rep-



resentatives from each discipline, and we apolo-
gize to all those whose research we were unable
to cover. The researchers whose work we do
describe often sent us materials or read drafts
for accuracy on very short notice. We would like
to single out those who took on the extra effort
of reviewing entire sections in order to minimize
the misrepresentations that are unavoidable in a
broad survey such as this one. These people in-
clude Fouad Ahmad, David Ceperley, Robert
Chervin, Art Freeman, Bruce Hannon, Michael
Heath, Michael Fainan, Karl Hess, Eric Jakobs-
son, Radha Nandkumar, Michael Norman,
David Pines, Michael Schlesinger, Harrell Sell-
ers, Shankar Subramaniam, Robert Sugar, War-
ren Washington, Robert Wilhelmson, and Carl
Woese. Finally, Michael Norman and Robert
Wilhelmson put in extra effort to create original
images and illustrations for our book.

Larry Smarr also benefitted from the gener-
ous help of a number of his fellow directors of
supercomputing facilities, including Bill Buzz-
bee, Sid Karin, Mal Kalos, Michael Levine,
Ralph Roskies, and Vic Peterson. The documen-
tation staffs of these centers and the science
writers for Cray Channels and Supercomputing
Review made our job of identifying and develop-
ing stories about individual research efforts
much easier than it would have been otherwise.

Bill Kaufmann, who traveled to numerous
conferences, symposia, and supercomputing fa-
cilities throughout the world to gather material
for this book, would like to thank his many
friends and colleagues for their help and hospi-
tality. Bill is especially grateful to the staffs at
Los Alamos National Laboratory, Lawrence Liv-
ermore National Laboratory, NASA Ames Re-
search Center, the Minnesota Supercomputing
Institute, Sandia National Laboratory, the Na-
tional Center for Supercomputing Applications,
the National Center for Atmospheric Research,
the European Centre for Medium-Range
Weather Forecasts, the San Diego Supercom-
puting Center, and Cray Research, Inc.

The manuscript for this book demanded
elaborate preparation, made necessary by the

enormous scope of the subject matter. The sup-
port of the staff of the National Center for
Supercomputing Applications, particularly in
Applications, Documentation, and Media Ser-
vices, was critical in many ways, as was NCSA’s
support structure provided by the National Sci-
ence Foundation, the State of Illinois, the Uni-
versity of Illinois at Urbana-Champaign, and
NCSA’s corporate sponsors. Jim Bottum, Dep-
uty Director of NCSA, kept the center running
while the Director was busy writing. The Direc-
tor’s assistant, Janus Wehmer, and her secretary,
Linda Griffet, provided support above and be-
yond the call of duty; without their dedicated
efforts, the publication schedule for this book
could never have been met.

It has taken five years to bring this book to
fruition. During that time, the staff of the Scien-
tific American Library has been very patient and
enormously competent. From the beginning,
publisher Jerry Lyons provided continual en-
couragement. Once we had completed our man-
uscript, Susan Moran provided meticulous and
invaluable editing. Indeed, she deserves to be a
third author of this book!

The Scientific American Library production
staff did a wonderful job, considering the hun-
dreds of color images that had to be collected
and processed. We would especially like to ac-
knowledge Larry Marcus for photo research,
John Hatzakis for page layout, Alice Fernandes-
Brown for our book’s design, Tina Hastings for
her work as project editor, Christine McAuliffe
for her oversight of the line illustrations, and
Sheila Anderson for her coordination of typeset-
ting and printing.

Finally, Larry Smarr would like to express
his deep appreciation for the unending patience
of his wife, Janet, and his boys, Joseph and Ben-
jamin, during the final period of preparation of
the manuscript.

William §. Kaufmann II1
Larry L. Smarr
September 1992
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The Emergence of a
Digital Science

(_omputers have a significant impact on daily life. They
keep track of our telephone calls, compute our income
taxes, and tally our charge cards. But one kind of com-
puter, the supercomputer, is actually changing the way in
which we conduct scientific research and engineering de-
sign. These computers, the most powerful that can be
built, allow us to replace the physical world with a digital
reality in the form of an array of numbers. When trans-
formed into images on a computer screen, these numbers
are easily seen to replicate essential features of phenomena
in the natural world.

In this image from a supercomputer simulation, the paths of
blue and orange tracer particles give a comprehensive view of
air motions in and around a developing severe thunderstorm.
The image maps the cloud’s raindrop content in greens and
vyellows at a horizontal plane 2.25 kilometers above the ground.
Below 2.25 kilometers the surface enclosing rain and cloud drops
is rendered as a solid and above as a transparent curtain.




For instance, when astrophysicists won-
dered whether an exotic arrangement of stars
could be two colliding galaxies, they pro-
grammed a computer to calculate the behavior
of two galaxies as their paths crossed. The com-
puter generated numbers, which when trans-
formed into images, showed whether two collid-
ing galaxies would look like the astronomical
phenomenon. Other numerical models can re-
veal the damage from a car crash, the action of
a drug on a cancer cell, the growth of a thun-
dercloud, or the evolution of the universe.

Our ability to create these numerical mod-
els rests on the amazing fact that mathematics
can be used to represent the physical universe.
No one really understands why this should be
so, but much of the success of modern science
and engineering is based on our ability to create
an abstract mapping between the motions of

_matter and symbols on paper. Following this
approach, scientists have gradually discovered a
set of mathematical equations, generally referred
to as the laws of nature, that describe the physi-
cal world. These fundamental equations are
written in the language of calculus, a branch of
mathematics that deals with rates of change—
how one quantity varies with respect to other
quantities such as time or location. Such equa-
tions are precise because calculus divides time
and space into points that are infinitesimally
close to each other.

A developing thunderstorm can be viewed
as nature’s way of physically solving a subset of
the laws that govern gas dynamics, heat transfer,
and the properties of water. This physical solu-
tion provides an evolving temperature, pressure,
wind speed, and wind direction at each point in
space. It also specifies the phase state of water—
whether the water is in vapor, liquid, or solid
form—and it specifies the size, amount, and
kind of water droplets or ice crystals.

Imagine recording the numerical value of
each of these variables at all points in space in
the volume of the atmosphere containing the
storm and for all moments in time during the
storm’s evolution. This infinite set of numbers
would, in principle, constitute a digital solution
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of the laws of nature. A different thunderstorm,
evolving with another set of numbers, would
represent a different digital solution to the same
laws of nature. Thus to every universal law there
are an enormous variety of possible physical so-
lutions, each of which has a corresponding digi-
tal solution.

Although nature is continually constructing
physical solutions to its laws, humans can nei-
ther experimentally nor theoretically produce

~completely accurate digital solutions. Our only

practical approach to creating digital solutions is
to use supercomputers to create a mathemati-
cally approximate solution to these equations,
called a numerical solution. This process is
often called simulation.

To perform a simulation, the scientist be-
gins by choosing an appropriate subset of the
fundamental equations. These equations, which
are valid at every point in space and at every
moment in time, are then replaced with a
closely related set of equations defined only at
selected points in space and selected moments

_in time. These “discretized” equations are pro-
grammed into the supercomputer. Instead of

tackling the impossible chore of solving the laws
of nature everywhere for all time, the supercom-
puter evaluates required quantities only at the
selected points at prescribed time intervals.
Such an approach has a number of distinct
advantages. First, scientists can replay a solution
over and over, whereas they are able to observe
most natural phenomena only once. Second,
they can study an ensemble of solutions, each
describing the same phenomenon but with vari-
ables of different values. For example, they
might simulate many different thunderstorms in
order to extract the common defining properties
from the details of the solutions. Scientists can
isolate a dominant subcomponent of a phenom-
enon and make a more finely resolved simula-
tion of just that feature. Finally, they can deter-
mine all the values of the physical variables as
these variables change through space and time.
However, the numerical solution by itself is
of little use. Today’s supercomputers are capa-
ble of performing one billion arithmetic opera-



tions per second, and a typical simulation runs
for hours. Even a small portion of the results
comprises billions of numbers. No scientist
could digest the vast columns of numbers that
stream from the computer programs used in
simulation were they not transformed into
images.

Simple arithmetic drives home the necessity
for visualization techniques that display data in
the form of pictures. In one second of opera-
tion, a modern supercomputer can generate one
billion numbers, which if printed out in 10 col-
umns of 50 lines apiece on each page, would
require a pile of paper over 50 stories tall! As
early as 1995, when supercomputers will be one
thousand times faster than today, that one sec-
ond of operation would produce enough printed
output to rise more than 100 miles in height.
For this reason, scientific visualization has be-
come as important as supercomputers to the
computational scientist.

By inserting more spatial points and short-
ening the time intervals, scientists can increase
the accuracy of a simulation, because the dis-
cretized computation approaches the continuous
coverage of space and time characteristic of the
exact ideal solution. However, improving the
realism of the simulation, either by adding more
points and time intervals or by adding more
laws of nature to the set of equations, increases
computing time. It also greatly increases the
amount of computation needed to transform the
enlarged numerical output into visual images.

An insatiable craving for ever faster super-
computers is a direct result of the scientist’s de-
sire to produce solutions of increasingly realistic
complexity during an allotted span of computer
time. For this reason, scientists have enthusias-
tically adopted each new generation of digital
electronic computers for over fifty years. During
that time, computers have increased in speed by
more than a billion times! And yet today’s scien-
tists are just as unsatisfied with current technol-
ogy as their predecessors were on the eve of
World War II.

Although at any given moment there has
always been a computer that was the fastest in

the world, the term “‘supercomputer’ began to
be commonly used for the fastest computers
only with the introduction in 1976 of the Cray-1
supercomputer, manufactured by Cray Research.
Fifteen years later, the Cray Y-MP supercom-
puter from the same company was 16 times
faster than the Cray-1. The demand for super-
computers has now brought forth a new genera-
tion of companies, each with a “better idea” of
how to make machines that are faster yet. By
1996 we can expect supercomputers to reach
speeds some 500 times faster than those of only
five years earlier. The pace of change is not only
unrelenting, it is also drastically accelerating. As
the power of supercomputers increases, so will_
the power of scientists to create and manipulate
digital worlds at will, propelling humanity to-
ward new levels of insight and comprehension.

At peak speed, an eight-processor Cray Y-MP can perform two
trillion arithmetic operations per second. The computer’s circuit
modules are located behind the vertical panels. The cushioned,
benchlike arrangement around the base of the computer contains
the computer’s power supply, as well as some of the plumbing
which circulates refrigerating coolant.

The Emergence of a Digital Science 3



The Three Modes of Science

For nearly four centuries, science has been pro-
gressing primarily through the application of two
_distinct methodologies: experiment and theory.
The expenmental/observanonal mode, first ex-
ploited by Galileo in the early 1600s, uses
instruments like telescopes, microscopes, and
particle accelerators to search for regularities
and patterns in the enormous complexity exhib-

ited by natural phenomena The goal of the ex-

perimental branch is to discover facts from

which physical models of reality emerge. We
refer to such models when we speak today of
molecules, viruses, galaxies, and the age of the
universe. From William Harvey’s discovery of
the circulation of blood to Ernest Rutherford’s
proof that atoms have nuclei, the experimental/
observational mode has given us fundamental
insights into the world around us.

The theoretical mode, epitomized by the
work of Isaac Newton in the mid-1600s, strives
to encode the discovered regularities and pat-
terns of the physical world into a set of relation-
ships between mathematical variables. These re-
lationships are expressed by the equations that
“form the laws of nature. Spectacular successes
of the theoretical mode include the Euler and
Navier-Stokes equations governing gas and fluid
dynamics and Maxwell’s equations, which com-
pletely describe the behavior of electricity, mag-
netism, and electromagnetic fields. Another ex-
ample of a natural law is the Schrédinger

equation, which embodies the tenets of quantum_

“mechanics that describe the submicroscopic
world of atoms and electrons. Finally, perhaps
the grandest example is the Einstein field equa-
tions of general relativity, which relate gravity to

the curvature of spacetime.

The two traditional modes of science haveﬁ
distinct limitations, however. For the experi-
menter, nature is sometimes difficult to investi-_
gate Many of the phenomena that scientists

ould like to observe are too small, or too far

away, or too fleeting to yield readily to scientific
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scrutiny. Theoreticians seeking a solution for a

specific instance of a phenomenon traditionally
are able to evaluate mathematlcally only the
31mplest scenarios. For instance, purely theoreti-
cal methods cannot solve exactly the equations
that describe the dynamics of a thunderstorm.
The development of digital computers has
transformed the pursuit of science because it has
given rise to a third methodology: the computa-
tional mode. The intent of this mode is to solve
numerically the theorist’s mathematical models
in their full complexity. A simulation that accu-
rately mimics a complex phenomenon contains a
wealth of information about that phenomenon.
Variables such as temperature, pressure, humid-
ity, and wind velocity are evaluated at thousands
of points by the supercomputer as it simulates
the development of a storm, for example. Such
data, which far exceed anything that could be
gained from launching a fleet of weather bal-
loons, reveals intimate details of what is going
on in the storm cloud. Furthermore, the compu-
tational scientist can compute the collisions of
a few atoms just as easily as the collisions of
enormous galaxies; the scales of space and time
are simply input parameters of the computer
program.

Exploring Solution Space

The mathematical laws of nature that describe
the fundamental workings of natural phenomena
express universal relationships between such
quantities as energy, mass, momentum, temper-
ature, pressure, and density. These equations
are powerful because they govern all possible sit-
uations, but they do not tell us anything about a
particular situation until we “‘solve’ them. For
example, Maxwell’s equations are universal, gen-
eral statements about electricity and magnetism,
but they do not immediately tell us anything
about a specific arrangement of a certain set of
electric charges that we might want to investi-
gate. If we want to know the electric field in the



vicinity of these charges, we must incorporate
information about the locations of the charges
into Maxwell’s equations and then solve them
for that particular case. The data appended to
the laws of physics to characterize a specific sce-
nario include the boundary conditions that de-
fine the spatial extent of the phenomenon to be
modeled and the initial conditions that give
starting values for the fundamental variables.

When solving the laws of nature, a theoreti-
cal scientist tradmonally attempts to find an
exact solution in symbohc form, such a solution
can be written down in terms of known mathe-
matical functions, like sine, cosine, or x°. ‘The
relative simplicity of such functions typically
requires the scientist to limit the problem under
investigation by making some simplifying restric-
tions such as requiring the geometry of the
problem to have special symmetries or the sys-
tem to be at rest (in equilibrium) and thus un-
changing over time.

The complete collection of all solutions
covering every conceivable circumstance ex-
pressed by a particular law of nature is called a
“solution space.” Because of the simplifying re-
strictions required by exact symbolic solutions,
these solutions probe only a small region of so-
lution space, and thus tell us little about how
nature can behave if, for instance, the geometry
of a system is highly asymmetrical or if the sys-
tem is vigorously dynamic.

A technique called perturbation theory can_
be used to explore regions of solution space in
close proximity to an exact solution. If an actual
system differs only slightly (it is “‘perturbed”)
“from a simpler system for which an exact solu-
tion exists, that solution may be expanded
mathematically to cover a slightly wider range of
circumstances. Thus, for instance, perturbation
methods make it possible to investigate a system
that has slightly less symmetry or is very near
equilibrium. In spite of their great usefulness,
these traditional techniques still leave vast areas
of solution space unexplored.

By way of an example, consider water
waves produced by winds blowing across the

ocean. When in equilibrium, the water and air
would be separated by a perfectly flat boundary.
Obviously, the solution is trivial to write down:
the density on each side of the interface is con-
stant (since the two fluids do not mix or propa-
gate waves), and the air and water are moving
at a uniform constant velocity with respect to
each other, or not moving at all. The familiar
small-amplitude waves induced by a gentle
breeze are a perturbed solution of this equilib-
rium state. The solution can be symbolically
represented as a nearly flat interface rippled by
sine waves propagating with constant velocity.

These waves represent what scientists term
a Kelvin-Helmholtz instability, after two nine-
teenth-century physicists who studied such phe-
nomena. By examining solutions to the equa-
tions of fluid dynamics, they discovered that
small imperfections in the surface at the inter-
face will grow to form moving waves when two
gases or fluids move slowly relative to each
other.

But when the gentle breeze increases its
velocity to become a raging gale, the simple roll-
ing wave develops much more complex shapes,
as the ocean’s surface becomes a seething tem-
pest of breaking waves and whitecaps. Here, in
a general region of solution space, there exists
no exact formula to capture the complexity of
the solution representing these phenomena.

From the Continuous to the Discrete

During the 1940s and 1950s, the Hungarian-
American mathematician John von Neumann
described a general procedure to explore those
regions of solution space beyond the reach of
exact solutions. To study complex phenomena,
we must leave the continuous world behind and
substitute in its place a dlSCI‘CtC representation

~ of the phenomena. Then, using a supercom-

puter, we can indeed solve the relevant equa-
tions of fluid flow even if the wind is blowing
faster than the speed of sound!

The Emergence of a Digital Science 5



The laws of nature govern what happens at
every point in space and at every moment of
time. Fortunately, to carry out our science, we
do not need to compute solutions to these laws
that finely. We can apply our equations at a set
of points in space that are separated by dis-
tances that are small compared to the size of the
objects we care to study. We can study the evo-
lution of the system at discrete intervals of time
that are short compared to the duration of the
process we are exploring. This replacement of
the continuous mathematics by discrete points
in space and discrete intervals of time is the key
that permits us to use supercomputers to ex-
plore the perennially forbidden regions of solu-
tion space.

This approach actually predates von Neu-
mann. Consider the archetypical formula for the
sine wave: sin (x), which can represent the solu-
tion to a wave on a plucked string. This formula
is very convenient for symbolic computing, as
when one needs to manipulate trigonometric
identities in order to prove a theorem. However,

when we need to use the sine function to solve
a practical problem, we evaluate the function at
a discrete set of points and exhibit the solution
in the familiar table of numbers found in any
book on trigonometry, thereby achieving a nu-
merical solution. Indeed one of the first uses of
the early mechanical calculators hundreds of
years ago was to compute trigonometry and log-
arithm tables from formulas.

Neither the formula “‘sin (x)”’ nor the tables
of numbers by themselves immediately call to
mind the beautiful regularity of this function.
To “see” this regularity we graph the numbers,
converting the solution from a digital to a visual
form that the human brain (some half of whose
nerve cells are devoted to visual processing) can
easily grasp and associate with physical phenom-
ena, such as rolling waves on the ocean’s surface.

This simple methodology of first solving
the mathematical laws of nature in a discrete
fashion using computers, then converting the
numbers to visual images so that the human
mind can extract understanding, is the funda-

SYMBOLIC sin? (x) + cos? (x) = 1 sin (x + 2x) = sin (x)
NUMERIC VISUAL
x | sin (x) x | sin (x) x | sin(x) 1.00 .o....

0.00 0.00 2.20 0.81 4.40 | -0.95 ® .

0.20 | 0.20 240 | 068| | 460 [ -0.99 —— -

0.40 0.39 2.60 0.52 480 | —-1.00 ¥ ®

0.60 [ 0.56 2.80 | 0.33 5.00 | —0.96 _ . ®

0.80 0.72 3.00 0.14 5.20 | -0.88 x 0.00 | L4 | fid? |

1.00 0.84 3.20 | —0.06 5.40 | -0.77 = ’ 2.00 e 4.00 6.od 8.00

1.20 0.93 3.40 | -0.26 5.60 | —0.63 . ® X

1.40 0.99 3.60 | —0.44 5.80 | —0.46 _050 o -

1.60 1.00 3.80 | —0.61 6.00 | -0.28 : " .'

1.80 0.97 4,00 | -0.76 6.20 | —0.08 ° =

2.00 | 091| [420 [-087| [640 [ 012 i i ®eqe®

The simple function, sin (x), can appear as a term in a symbolic statement (top), or it
can be evaluated at discrete points to produce a numerical solution (left), which can be

converted to graphical form (right).
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