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PREFAC

‘\/ any introductory differential equations courses in the recent past have empha-
| /Isized the formal solution of standard types of differential equations using a
(seeming) grab-bag of systematic solution techniques. Many students have concen-
trated on learning to match memorized methods with memorized equations. The
evolution of the present text is based on experience teaching a course with a greater
emphasis on conceptual ideas and the use of applications and computing projects to
involve students in more intense and sustained problem-solving experiences.

Both the conceptual and the computational aspects of such a course depend
heavily on the perspective and techniques of linear algebra. Consequently, the study
of differential equations and linear algebra in tandem reinforces the learning of both
subjects. In this book we therefore have combined core topics in elementary differ-
ential equations with those concepts and methods of elementary linear algebra that
are needed for a contemporary introduction to differential equations.

The availability of technical computing environments like Maple, Mathemat-
ica, and MATLAB is reshaping the role and applications of differential equations in
science and engineering, and has shaped our approach in this text. New technology
motivates a shift in emphasis from traditional manual methods to both qualitative
and computer-based methods that

- render accessible a wider range of more realistic applications;

permit the use of both numerical computation and graphical visualization to
develop greater conceptual understanding; and

» encourage empirical investigations that involve deeper thought and analysis
than standard textbook problems.

Vlajor Features

S SN ——_—— —— SR——

The following features of this text are intended to support a contemporary differen-
tial equations course with linear algebra that augments traditional core skills with
conceptual perspectives that students will need for the effective use of differential
equations in their subsequent work and study:

The organization of the book emphasizes linear systems of algebraic and dif-
ferential equations. Chapter 3 introduces matrices and determinants as needed
for concrete computational purposes. Chapter 4 introduces vector spaces in
preparation for understanding (in Chapter 5) the solution set of an nth order
homogeneous linear differential equation as an n-dimensional vector space
of functions, and for realizing that finding a general solution of the equation
amounts to finding a basis for its solution space. (Students who proceed to a
subsequent course in abstract linear algebra may benefit especially from this
concrete experience with vector spaces.) Chapter 6 introduces eigenvalues and
eigenvectors in preparation for solving linear systems of differential equations

Xi
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Computing Features

in Chapters 7 and 8. In Chapter 8 we may go a bit further than usual with
the computation of matrix exponentials. These linear tools are applied to the
analysis of nonlinear systems and phenomena in Chapter 9.

Coverage of seldom-used topics has been trimmed and new topics added to
place a greater emphasis on core techniques as well as qualitative aspects
of the subject associated with direction fields, solution curves, phase plane
portraits, and dynamical systems. We combine symbolic, graphic, and nu-
meric solution methods wherever it seems advantageous. A fresh computa-
tional flavor should be evident in figures, examples, problems, and applica-
tions throughout the text. Over 10% of the examples in the text are new or
newly revised for this edition.

The first course in differential equations should also be a window on the world
of mathematics. While it is neither feasible nor desirable to include proofs of
the fundamental existence and uniqueness theorems along the way in an ele-
mentary course, students need to see precise and clear-cut statements of these
theorems, and to understand their role in the subject. We include appropri-
ate existence and uniqueness proofs in Appendix A, and occasionally refer to
them in the main body of the text.

While our approach reflects the widespread use of new computer methods for
the solution of differential equations and linear systems, certain elementary
analytical methods of solution (as in Chapters 1 and 5) are important for stu-
dents to learn. Effective and reliable use of numerical methods often requires
preliminary analysis using standard elementary techniques; the construction
of a realistic numerical model often is based on the study of a simpler analyt-
ical model. We therefore continue to stress the mastery of traditional solution
techniques (especially through the inclusion of extensive problem sets).

The following features highlight the flavor of computing technology that distin-
guishes much of our exposition.

Almost 600 computer-generated figures—over half of them new for this edi-
tion and most constructed using Mathematica or MATLAB—show students
vivid pictures of direction fields, solution curves, and phase plane portraits
that bring symbolic solutions of differential equations to life.

About 3 dozen application modules follow key sections throughout the text.
Most of these applications outline “technology neutral” investigations illus-
trating the use of technical computing systems and seek to actively engage
students in the application of new technology.

A fresh numerical emphasis that is afforded by the early introduction of nu-
merical solution techniques in Chapter 2 (on mathematical models and nu-
merical methods). Here and in Section 7.6, where numerical techniques for
systems are treated, a concrete and tangible flavor is achieved by the inclu-
sion of numerical algorithms presented in parallel fashion for systems ranging
from graphing calculators to MATLAB.

A conceptual perspective shaped by the availability of computational aids,
which permits a leaner and more streamlined coverage of certain traditional
manual topics (like exact equations and variation of parameters) in Chapters 1
and 5.



Applications

Preface Xxiii

Mathematical modeling is a goal and constant motivation for the study of differen-
tial equations. To sample the range of applications in this text, take a look at the
following questions:

What explains the commonly observed time lag between indoor and outdoor
daily temperature oscillations? (Section 1.5)

What makes the difference between doomsday and extinction in alligator pop-
ulations? (Section 2.1)

How do a unicycle and a two-axle car react differently to road bumps? (Sec-
tions 5.6 and 7.4)

Why might an earthquake demolish one building and leave standing the one
next door? (Section 7.4)

How can you predict the time of next perihelion passage of a newly observed
comet? (Section 7.6)

What determines whether two species will live harmoniously together, or
whether competition will result in the extinction of one of them and the sur-
vival of the other? (Section 9.3)

Orgzmizali()n and Content

We have reshaped the usual approach and sequence of topics to accommodate new
technology and new perspectives. For instance:

After a precis of first-order equations in Chapter | (though with the coverage
of certain traditional symbolic methods streamlined a bit), Chapter 2 offers an
early introduction to mathematical modeling, stability and qualitative proper-
ties of differential equations, and numerical methods—a combination of topics
that frequently are dispersed later in an introductory course.

Chapters 3 (Linear Systems and Matrices), 4 (Vector Spaces), and 6 (Eigen-
values and Eigenvectors) provide concrete and self-contained coverage of the
elementary linear algebra concepts and techniques that are needed for the so-
lution of linear differential equations and systems. Chapter 4 now includes the
new sections 4.5 (row and column spaces) and 4.6 (orthogonal vectors in R")
that have been added for this edition. Chapter 6 concludes with applications
of diagonalizable matrices and a proof of the Cayley-Hamilton theorem for
such matrices.

Chapter 5 exploits the linear algebra of Chapters 3 and 4 to present efficiently
the theory and solution of single linear differential equations. Chapter 7 is
based on the eigenvalue approach to linear systems, and includes (in Section
7.5) the Jordan normal form for matrices and its application to the general
Cayley-Hamilton theorem. This chapter includes an unusual number of appli-
cations (ranging from railway cars to earthquakes) of the various cases of the
eigenvalue method, and concludes in Section 7.6 with numerical methods for
systems.

Chapter 8 is devoted to matrix exponentials with applications to linear sys-
tems of differential equations. The spectral decomposition method of Section
8.3 offers students an especially concrete approach to the computation of ma-
trix exponentials. Our treatment of this material owes much to advice and
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course notes provided by Professor Dar-Veig Ho of the Georgia Institute of
Technology.

Chapter 9 exploits linear methods for the investigation of nonlinear systems
and phenomena, and ranges from phase plane analysis to applications involv-
ing ecological and mechanical systems.

Chapters 10 treats Laplace transform methods for the solution of constant-
coefficient linear differential equations with a goal of handling the piecewise
continuous and periodic forcing functions that are common in physical ap-
plications. Chapter 11 treats power series methods with a goal of discussing
Bessel’s equation with sufficient detail for the most common elementary ap-
plications.

Over 15% of the text’s almost 2300 problems are new for this edition or are newly
revised to include graphic or qualitative content. Accordingly, the answer section
now includes almost 200 new computer-generated figures illustrating those which
students are expected to construct.

The answer section for this revision has been expanded considerably to in-
crease its value as a learning aid. It now includes the answers to most odd-numbered
problems plus a good many even-numbered ones. The 590-page Instructor’s So-
lutions Manual (0-13-148148-7) accompanying this book provides worked-out so-
lutions for most of the problems in the book, and the 330-page Student Solutions
Manual (0-13-148251-3) contains solutions for most of the odd-numbered prob-
lems.

The approximately 3 dozen application modules in the text contain additional
problem and project material designed largely to engage students in the exploration
and application of computational technology. These investigations are expanded
considerably in the 250-page Applications Manual (0-13148148-7) that accompa-
nies the text and supplements it with additional and sometimes more challenging
investigations. Each section in this manual has parallel subsections Using Maple,
Using Mathematica, and Using MATLAB that detail the applicable methods and
techniques of each system, and will afford student users an opportunity to compare
the merits and styles of different computational systems.

The author-written solutions and applications manuals described above, as well as
the additional technology manuals listed below, are available shrink-wrapped free
with the textbook upon order using the indicated ISBN numbers:

Text with Student Solutions Manual (0-13-152360-0)

Text with Applications Manual (0-13-151944-1)

Text with David Calvis, Mathematica for Differential Equations: Projects,
Insights, Syntax, and Animations (0-13-161732-X)

Text with Selwyn Hollis, A Mathematica Companion for Differential Equa-
tions (0-13-151903-4)

Text with Robert Gilbert & George Hsiao, Maple Projects for Differential
Equations (0-13-161734-6)

Text with John Polking & David Arnold, Ordinary Differential Equations Us-
ing MATLAB, 3rd edition (0-13-151905-0)
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1.1

CHAPTETR

First-Order

Differential Equations

al Equations and Mathematical Models

'he laws of the universe are written in the language of mathematics. Algebra

_ is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f'(t) of the function f is the rate at which
the quantity x f(#) is changing with respect to the independent variable ¢, it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

The differential equation
I _ g
—_— =X
dt
involves both the unknown function x(¢) and its first derivative x'(t) = dx/dt. The
differential equation
d’y | .dy
—+3—=+4+7y=0
dx? ax "7
involves the unknown function y of the independent variable x and the first two
derivatives y’ and y” of y. b

d

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.



2 Chapter 1 First-Order Differential EQuations

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x> +7x% — 11x +41 = 0. By contrast, in solving a differential equation, we
are challenged to find the unknown functions y = y(x) for which an identity such
as y'(x) = 2xy(x)—that is, the differential equation

dy

2 =9

dx o
—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

m If C is a constant and

then

y(x) = Ce®, (1)

d
L C (2xe"‘2) = (2x) (Ce"z) = 2xy.
dx
Thus every function y(x) of the form in Eq. (1) satisfies—and thus is a solution
of—the differential equation
bal AP 2
T Y (2)
for all x. In particular, Eq. (1) defines an infinite family of different solutions of
this differential equation, one for each choice of the arbitrary constant C. By the
method of separation of variables (Section 1.4) it can be shown that every solution
of the differential equation in (2) is of the form in Eq. (1). ®

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time 7, but we will see numerous examples in which some quantity other
than time is the independent variable.

Newton’s law of cooling may be stated in this way: The time rate of change (the
rate of change with respect to time #) of the temperature 7' (¢) of a body is propor-
tional to the difference between T and the temperature A of the surrounding medium
(Fig. 1.1.1). That is,

:/ /TemperatureA dT kT — &) 3)
— dt '
Temperature T where k is a positive constant. Observe that if T > A, then dT/dt < 0, so the

temperature is a decreasing function of ¢ and the body is cooling. Butif T < A,
then dT' /dt > 0, so that T is increasing.
Thus the physical law is translated into a differential equation. If we are given
FIGURE 1.1.1. Newton’s law  the values of k and A, we should be able to find an explicit formula for 7'(¢), and

of cooling, Eq. (3), describes the  then—with the aid of this formula—we can predict the future temperature of the
cooling of a hot rock in water. body. ]

Torricelli’s law implies that the time rate of change of the volu;’rle;i}wb}m;;the;iqr_{a‘l
draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water
in the tank:

Example 4

av
s = —k\/y, 4)
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where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional
area A, then V = Ay, sodV/dt = A - (dy/dt). In this case Eq. (4) takes the form
dy
— = —hy, 5
T vy (5)
where h = k/A is a constant. |

The time rate of change of a population P (¢) with constant birth and death rates is,
in many simple cases, proportional to the size of the population. That is,

_ dpP

— — —=kP, 6
g j "y (6)
[ —1 =

Example

where k is the constant of proportionality.

Volume V |y Let us discuss Example 5 further. Note first that each function of the form
L ;l P(1) = Ce" )
- l is a solution of the differential equation
FIGURE 1.1.2. Torricelli’s law ar _ kP

of draining, Eq. (4), describes di
the draining of a water tank. in (6). We verify this assertion as follows:

P'(t) = Cke" =k (Ce"") = kP(1)

for all real numbers ¢. Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant &k is known, the differential equation
dP/dt = kP has infinitely many different solutions of the form P(t) = CeX,
one for each choice of the “arbitrary” constant C. This is typical of differential
equations. It is also fortunate, because it may allow us to use additional information
to select from among all these solutions a particular one that fits the situation under
study.

Suppose that P(t) = Ce*' is the population of a colony of bacteria at time ¢, that
the population at time ¢t = 0 (hours, h) was 1000, and that the population doubled
after 1 h. This additional information about P (¢) yields the following equations:

1000 = P(0) = Ce° = C,
2000 = P(1) = Cé-.

_Example 6

It follows that C = 1000 and that ¢ = 2, so k = In2 =~ 0.693147. With this value
of k the differential equation in (6) is

dP
i (In2)P =~ (0.693147) P.

Substitution of £ = In2 and C = 1000 in Eq. (7) yields the particular solution
P(r) = 1000e™?" = 1000(e"?)" = 1000-2"  (because e"? = 2)

that satisfies the given conditions. We can use this particular solution to predict
future populations of the bacteria colony. For instance, the predicted number of
bacteria in the population after one and a half hours (when ¢t = 1.5) is

P(1.5) = 1000 - 2%/? ~ 2828. (]



