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PREFACE

This book brings into one volume two network models that can be broadly
classified as queueing network models and graphical network models. Queueing
networks are systems where customers move among service stations where
they receive service. Usually, the service times and the order in which custom-
ers visit the service stations are random. The order in which service is received
at the service stations is governed by a probabilistic routing schedule. Queueing
networks are popularly used in traffic modeling in computer and telecommu-
nications networks, transportation systems, and manufacturing networks.
Graphical models are systems that use graphs to model different types of
problems. They include Bayesian networks, which are also called directed
graphical models, Boolean networks, and random networks. Graphical models
are used in statistics, data mining, and social networks.

The need for a book of this nature arises from the fact that we live in an
cra of interdisciplinary studies and research activities when both networks are
becoming important in arcas that they were not originally used. Thus, any
person involved in such interdisciplinary studies or research activities needs
to have a good understanding of both types of networks. This book is intended
to meet this need.

The book is organized into three parts. The first part, Chapters 1 and 2, deals
with the basic concepts of probability (Chapter 1) and stochastic processes
(Chapter 2). The second part, Chapters 3-6, deals with queueing systems.
Specifically, Chapter 3 deals with basic queueing theory, particularly a class of
queueing systems that we refer to as Markovian queucing systems. Chapter 4
deals with advanced queucing systems, particularly the non-Markovian queue-
ing systems. Chapter 5 deals with queueing networks, and Chapter 6 deals with
approximations of queueing networks. The third part, Chapters 7-10, deals

xi
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Figure 1 Precedence relations of chapters.

with graphical models. Chapter 7 deals with an introduction to graph theory,
Chapter 8 deals with Bayesian networks, Chapter 9 deals with Boolean net-
works, and Chapter 10 deals with random networks.

The book is self-contained and is written with a view to circumventing the
proof-theorem format that is traditionally used in stochastic systems modeling
books. It is intended to be an introductory graduate text on stochastic net-
works and presents the basic results without much emphasis on proving theo-
rems. Thus, it is designed for science and engineering applications. Students
who have an interest in traffic engineering, transportation, and manufacturing
networks will need to cover parts 1 and 2 as well as Chapter 10 in part 3, while
students with an interest in expert systems, statistics, and social sciences will
need to cover parts 1 and 3. The precedence relations among the chapters are
shown in Figure 1.
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BASIC CONCEPTS IN PROBABILITY

1.1 INTRODUCTION

The concepts of experiments and events are very important in the study of
probability. In probability, an experiment is any process of trial and observa-
tion. An experiment whose outcome is uncertain before it is performed is
called a random experiment. When we perform a random experiment, the
collection of possible elementary outcomes is called the sample space of
the experiment, which is usually denoted by Q. We define these outcomes as
elementary outcomes because exactly one of the outcomes occurs when the
experiment is performed. The elementary outcomes of an experiment are
called the sample points of the sample space and are denoted by wy, i=1,
2, ... If there are n possible outcomes of an experiment, then the sample space
is Q={wy, wy ..., w,). An event is the occurrence of either a prescribed
outcome or any one of a number of possible outcomes of an experiment. Thus,
an event is a subset of the sample space.

1.2 RANDOM VARIABLES
Consider a random experiment with sample space Q. Let w be a sample point

in Q. We are interested in assigning a real number to each w € Q. A random
variable, X(w). is a single-valued real function that assigns a real number.

Fundamentals of Stochastic Networks, First Edition. Oliver C. Ibe.
© 2011 John Wiley & Sons. Inc. Published 2011 by John Wiley & Sons, Inc.



2 BASIC CONCEPTS IN PROBABILITY

called the value of X(w), to each sample point w € Q. That is, it is a mapping
of the sample space onto the real line.

Generally a random variable is represented by a single letter X instead of
the function X(w). Therefore, in the remainder of the book we use X to denote
a random variable. The sample space Q is called the domain of the random
variable X. Also, the collection of all numbers that are values of X is called
the range of the random variable X.

Let X be a random variable and x a fixed real value. Let the event A, define
the subset of Q that consists of all real sample points to which the random
variable X assigns the number x.

That is,

A, ={w|X(w)=x}=[X=x].
Since A, is an event, it will have a probability, which we define as follows:
p=P[A,].

We can define other types of events in terms of a random variable. For fixed
numbers x, a, and b, we can define the following:
[X <x]={w|X (w)<x},
[X >x]={w|X (w)> x},
[a< X <b]={wla< X (w)<b}.

These events have probabilities that are denoted by

e P[X <x]is the probability that X takes a value less than or equal to x.
e P[X > x] is the probability that X takes a value greater than x; this is
equal to 1 - P[X < x].

e Pla< X < b] is the probability that X takes a value that strictly lies
between a and b.

1.2.1 Distribution Functions

et X be a random variable and x be a number. As stated earlier, we can define
the event [X < x] = {x|X(w) < x}. The distribution function (or the cumulative
distribution function [CDF]) of X is defined by:

Fy(x)=P[X <x] —co<x<oo,

That is, Fx(x) denotes the probability that the random variable X takes on a
value that is less than or equal to x. Some properties of Fy(x) include:

1. Fy(x) is a nondecreasing function, which means that if x; < x,, then
Fx(x;) < Fy(x,). Thus, Fx(x) can increase or stay level, but it cannot go
down.
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2. 0< Fylx) <1

3. Fy(ee) =1

4. Fx(—=)=0

5. Pla< X <b|=Fy(b) - Fy(a)

6. PIX>al=1-PlX<a]l=1-Fy(a)

1.2.2 Discrete Random Variables

A discrete random variable is a random variable that can take on at most a
countable number of possible values. For a discrete random variable X, the
probability mass function (PMF), py(x). is defined as follows:

py(x)=P[X =x].

The PMF is nonzero for at most a countable or countably infinite number of
values of x. In particular, if we assume that X can only assume one of the
values x|, x5, ... .x,. then:

px(x)20 i=1,2...,n,
py(x)=0 otherwise.

The CDF of X can be expressed in terms of py(x) as follows:

Fo(x)= Y px (k).

k<x

The CDF of a discrete random variable is a step function. That is, if X takes

on values x, x2, X3, ..., where x; < x; <x3 < ..., then the value of Fy(x) is
constant in the interval between x;, and x; and then takes a jump of size
py(x)atx.i=2,3.... Thus. in this case, Fx(x) represents the sum of all the

probability masses we have encountered as we move from —oe to x.

1.2.3 Continuous Random Variables

Discrete random variables have a set of possible values that are either finite
or countably infinite. However, there exists another group of random variables
that can assume an uncountable set of possible values. Such random variables
are called continuous random variables. Thus, we define a random variable X
to be a continuous random variable if there exists a nonnegative function fx(x),
defined for all real x € (—oo, =), having the property that for any set A of real
numbers,

P[X e A]=J/'X(.r)dx.

The function fy(x) is called the probability density function (PDF) of the
random variable X and is defined by:
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_dFx(x)
fx(x)= i

The properties of fy(x) are as follows:

L. fy(x)=0
2. Since X must assume some value, |~ fy (x)dx =1
3. Pla< X <b]=]! fy(x)dx, which means that P[X =a]=], fy(x)dx =0.

Thus, the probability that a continuous random variable will assume any
fixed value is zero.

4. P[X <a]l=P[X <a]=Fy(a)=]". fy(x)dx

1.2.4 Expectations

If X is a random variable, then the expectation (or expected value or mean) of
X, denoted by E[X]. is defined by:

Z xipx(x;) X discrete
E[X]=
j xfyx(x)dx X continuous

Thus, the expected value of X is a weighted average of the possible values that
X can take, where each value is weighted by the probability that X takes that
value. The expected value of X is sometimes denoted by X

1.2.5 Moments of Random Variables and the Variance

The nth moment of the random variable X, denoted by E[X" ] = X" is defined
by:

2 x'py(x;)) X discrete
E[X"]zX"z ;
J' x"f(x)dx X continuous

forn=1,2,3,....The first moment, E[X], is the expected value of X.

We can also define the central moments (or moments about the mean) of a
random variable. These are the moments of the difference between a random
variable and its expected value. The nth central moment is defined by

Z( -X) pe(x,) X discrete

J x—X fx x)dx X continuous
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The central moment for the case of n = 2 is very important and carries a special
name, the variance, which is usually denoted by 6%. Thus.
Z(x,- - /\_’)3 px(x;) X discrete
ot = E[(x- %) ]=(x-X) ={

1.3 TRANSFORM METHODS

Different types of transforms are used in science and engineering. In this book
we consider two types of transforms: the z-transform of PMFs and the
s-transform of PDFs of nonnegative random variables. These transforms are
particularly used when random variables take only nonnegative values, which
is usually the case in many applications discussed in this book.

1.3.1 The s-Transform

Let fy(x) be the PDF of the continuous random variable X that takes only
nonnegative values; that is, fy(x) = 0 for x < 0. The s-transform of fy(x),denoted
by My(s), is defined by:

My (s)= E[e™"]= j: e fe (x)dx.

One important property of an s-transform is that when it is evaluated at the
point s = 0, its value is equal to 1. That is,

My (s)|._, = J.:fx-(x)dx 1.

For example, the value of K for which the function A(s)= K/(s+5) is a valid
s-transform of a PDF is obtained by setting A(0) = 1, which gives:

K/5=1=K =5.

1.3.2 Moment-Generating Property of the s-Transform

One of the primary reasons for studying the transform methods is to use them
to derive the moments of the different probability distributions. By
definition:

My(s)=[ e fy(x)dx.

Taking different derivatives of My(s) and evaluating them at s = 0, we obtain
the following results:



