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Statistical Mechanics of Disordered Systems

Our mathematical understanding of the statistical mechanics of disordered systems is going
through a period of stunning progress. This self-contained book is a graduate-level intro-
duction for mathematicians and for physicists interested in the mathematical foundations of
the field, and can be used as a textbook for a two-semester course on mathematical statistical
mechanics. It assumes only some basic knowledge of classical physics; on the mathematics
side, the reader should have a good working knowledge of graduate-level probability theory.
Part [ gives a concise introduction to thermodynamics and statistical mechanics, which
provides the tools and concepts needed later. The main topics treated here are the classical
ensembles of statistical mechanics, lattice gases and spin systems, the rigorous setting
of the theory of infinite-volume Gibbs states (DLR theory). and cluster expansions for
high- and low-temperature phases. Part Il proceeds to disordered lattice models. It presents
the general theory of random Gibbs states and metastates in the spirit of Newman—Stein
and the random-field Ising model. Part III is devoted to disordered mean-field models. It
begins with the random energy model as a toy example and then explains in depth the
geometric structures arising in the description of the infinite-volume limit of the Gibbs
states in the generalized random energy models. Finally, it presents the latest developments
in the mathematical understanding of mean-field spin-glass models. In particular, recent
progress towards a rigorous understanding of the replica symmetry breaking solutions of
the Sherrington-Kirkpatrick spin-glass models, due to Guerra, Aizenman-Sims-Starr, and
Talagrand, is reviewed in some detail. The last two chapters treat applications to non-physical
systems: the Hopfield neural network model and the number partitioning problem.

ANTON BOVIER is Professor of Mathematics at the Technische Universitiat Berlin and
the Weierstra3-Institut fiir Angewandte Analysis und Stochastik.
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Preface

Statistical mechanics is the branch of physics that attempts to understand the laws of the
behaviour of systems that are composed of very many individual components, such as
gases, liquids, or crystalline solids. The statistical mechanics of disordered systems is a
particularly difficult, but also particularly exciting, branch of the general subject, that is
devoted to the same problem in situations when the interactions between these components
are very irregular and inhomogeneous, and can only be described in terms of their statistical
properties. From the mathematical point of view. statistical mechanics is, in the spirit of
Dobrushin, a ‘branch of probability theory’, and the present book adopts this point of view,
while trying not to neglect the fact that it is, after all, also a branch of physics.

This book grew out of lecture notes I compiled in 2001 for a Concentrated Advanced
Course at the University of Copenhagen in the framework of the MaPhySto programme and
that appeared in the MaPhySto Lecture Notes series [39] in the same year. In 2004 [ taught
a two-semester course on Statistical Mechanics at the Technical University of Berlin within
the curriculum of mathematical physics for advanced undergraduate students, both from the
physics and the mathematics departments. It occurred to me that the material 1 was going
to cover in this course could indeed provide a suitable scope for a book, in particular as the
mathematical understanding of the field was going through a period of stunning progress,
and that an introductory textbook, written from a mathematical perspective, was maybe
more sought after than ever. I decided to include a considerable amount of basic material
on statistical mechanics, in order to make it reasonably self-contained.

Thus, Part I gives a brief introduction to statistical mechanics, starting from the basic
notions of thermodynamics and the fundamental concepts of statistical mechanics. It then
introduces the theory of lattice spin systems, the Gibbsian formalism in the spirit of
Dobrushin, Lanford, and Ruelle, as well as some of the main tools for the analysis of
the Gibbs measures, including cluster expansions.

Part II of the book deals with disordered spin systems on the lattice. It starts out with a
comprehensive introduction to the formalism of random Gibbs measures and metastates.
Then I discuss the extensions and limitations of the methods introduced in the first part. The
bulk of this part is devoted to the random field Ising model and the question of how unique-
ness and non-uniqueness can be analyzed in this case. | present the proof of uniqueness in
d = 2 due to Aizenman and Wehr. A large section is also devoted to the renormalization
group approach of Bricmont and Kupiainen, used to prove non-uniqueness ind > 3. 1 only
comment briefly on the issue of spin-glasses with short-range interactions.
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Part 11 is essentially devoted to mean-field models of spin-glasses. I basically treat two
classes of models: Gaussian processes on the hypercube, and models of the Hopfield type. I
will go to great lengths to explain in all detail the case of the random energy model (REM)
and the generalized random energy model (GREM), which will give us an idea what a
complete solution of such models could look like. Then I will briefly expose the deep
ideas of F. Guerra and their reformulation by Aizenman. Sims, and Starr, that show how
GREM-like structures can be used to provide bounds, at least for free energies, of general
mean-field models in terms of hierarchical structures, essentially explaining the nature of
the Parisi solution. Talagrand’s proof that this bound is exact will not be given here. Finally.
[ discuss some of the simpler aspects of the nature of the Gibbs measures in the p-spin SK
models. Much more on the SK models can be found in Talagrand’s recent book [239].

The last two chapters deal with models that demonstrate the relevance of statistical
mechanics beyond the classical “physics’ applications. The Hopfield model of neural net-
works has played a rather important role in the history of the subject, and I try to give a more
elementary and to some extent complementary presentation to the one that can be found in
Talagrand’s book. The final chapter is devoted to the number partitioning problem, where
a rather charming connection between a problem from combinatorial optimisation and the
REM arises.

My original intention for this book had been to give full proofs of all the main results
that are presented, but in the end I found that this was impracticable and that at some places
the reader had to be referred to the original literature. So the practice in the book is that
full proofs are given when they are reasonably easy, or where I feel they are essential for
understanding. In other cases, they are omitted or only outlined.

References are given primarily with the intention to help the reader find a way into the
original literature, and not with the ambition of completeness. Overall, the selection of
references is due largely to my limited knowledge and memory. More generally, although
I do make some comments on the history of the subject, these are by no means to be taken
too seriously. This book is intended neither as an encyclopedia nor as an account of the
history of the subject.

I have tried to keep the prerequisites for reading as low as reasonable. I assume very
little physics background, apart from a rudimentary knowledge of classical mechanics.
On the mathematics side, the reader should, however, have a good working knowledge of
probability theory, roughly on the level of a graduate course.

There are a great number of very interesting topics that have been left out, either because
they are treated elsewhere, or because I know too little about them, or simply for no good
reason. One of these are short-range spin-glasses. A good source for this remains Newman’s
book [ 185], and at this moment I have nothing serious to add to this. Another topic I skip are
Kac models. Kac models make a charming link between mean-field models and finite-range
models. There has been a great deal of work concerning them in the context of disordered
systems, both in the context of the random field Ising model [73, 74], the Hopfield model
[46, 47], and very recently in spin-glasses [38, 104], and it would be nice to cover this.
There is a beautiful new book by Errico Presutti dealing with Kac models [209], which
does not, however, treat disordered systems.

I want to thank Ole E. Barndorff-Nielsen and Martin Jacobsen for the invita-
tion to teach a course in Copenhagen in the MaPhySto programme, which ultimately
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triggered the writing of this book. I am deeply indebted to my collaborators, past and
present, on subjects related to this book; notably J. Frohlich (who initiated me to the sub-
ject of disordered systems more than 20 years ago), V. Gayrard, U. Glaus, Ch. Kiilske,
I. Kurkova, M. Lowe, D. Mason, 1. Merola, B. Niederhauser, P. Picco, E. Presutti, A. C. D.
van Enter, and M. Zahradnik, all of whom have contributed greatly to my understanding
of the subject. Special thanks are due to Irina Kurkova who kindly provided most of the
figures and much of the material of Chapter 10.

I am very grateful to all those who read preliminary versions and pointed out errors,
misprints, and omissions, or made other comments, notably J. Cerny. V. Gayrard, B. Gentz,
M. Jacobsen, 1. Kurkova, M. Lowe, E. Orlandi, and T. Schreiber, but in particular Aernout
van Enter, who has relentlessly read various versions of the manuscript, and has provided
a wealth of suggestions and corrections. 1 also want to thank my Editor at Cambridge
University Press, Diana Gillooly, for suggesting this book project, and for constant help
during the writing and production. Finally, I thank Christina van de Sand for her help in the
production of the IXTEX version of the typescript.
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Poisson point process

spin configuration

value of spin at x

configuation space

single spin space

spin configurations in A
hypercube in dimension N
grand canonical distribution
grand canonical partition function
point process of masses
pattern (Hopfield model)
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bounded measurable functions
local functions

quasi-local functions
continuous functions
continuous local functions
continuous quasi-local functions
hierarchical overlap

energy

Helmholtz free energy
specific free energ

free energy in spin system
Gibbs free energy

enthalpy

relative entropy

finite volume Hamiltonian
Hamiltonian function

Cramer entropy

correction to Cramer entropy
joint measures

equilibrium magnetization
empirical magnetization
control fields

pressure
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entropy

small fields

temperature

scaling function for Gaussian random variable on Sy
volume
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standardized Gaussian process
canonical partition function
micro-canonical partition function
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Introduction

L’analyse mathématique, n’est elle donc qu’un vain jeu d’esprit? Elle ne peut
donner au physicien qu’un langage commode; n’est-ce pas la un médiocre
service, dont on aurait pu se passer a la rigueur; et méme n’est il pas a craindre
que ce langage artificiel ne soit un voile interposé entre la réalité et I'ceil du
physicien? Loin de Ia, sans ce langage. la pluspart des analogies intimes des
choses nous seraient demeurées a jamais inconnues; et nous aurions toujours
ignoré 1’harmonie interne du monde, qui est. nous le verrons, la seule véritable
réalité objective.'

Henri Poincaré, La valeur de la science.

Starting with the Newtonian revolution, the eighteenth and nineteenth centuries saw with
the development of analytical mechanics an unprecedented tool for the analysis and pre-
diction of natural phenomena. The power and precision of Hamiltonian perturbation theory
allowed even the details of the motion observed in the solar system to be explained quanti-
tatively. In practical terms, analytical mechanics made the construction of highly effective
machines possible. Unsurprisingly, these successes led to the widespread belief that, ulti-
mately, mechanics could explain the functioning of the entire universe. On the basis of this
confidence, new areas of physics, outside the realm of the immediate applicability of New-
tonian mechanics, became the target of the new science of theoretical (analytical) physics.
One of the most important of these new fields was the theory of heat, or thermodynamics.
One of the main principles of Newtonian mechanics was that of the conservation of energy.
Now, such a principle could not hold entirely. due to the ubiquitous loss of energy through
friction. Thus, all machines on earth require some source of energy. One convenient source
of energy is heat, obtainable, e.g., from the burning of wood, coal, or petrol. A central
objective of the theory of thermodynamics was to understand how the two types of energy,
mechanical and thermal, could be converted into each other. This was originally a completely
pragmatic theory, that introduced new concepts related to the phenomenon of heat, tem-
perature and entropy, and coupled these to mechanical concepts of energy and force. Only
towards the end of the nineteenth century. when the success of mechanics reached a peak,
was Boltzmann, following earlier work by Bernoulli, Herapath, Joule, Kronig, Claudius,

! Approximately: So is mathematical analysis then not just a vain game of the mind? To the physicist it can only
give a convenient language; but isn’t that a mediocre service, which after all we could have done without; and.
is it not even to be feared that this artificial language be a veil. interposed between reality and the physicist’s
eye? Far from that, without this language most of the intimate analogies of things would forever have remained
unknown to us; and we would never have had knowledge of the internal harmony of the world, which is, as we
shall see, the only true objective reality.
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and Maxwell, able to give a mechanical interpretation of the thermodynamic effects on the
basis of the atomistic theory. This kinetic theory of gases turned into what we now know as
statistical mechanics through the work of Gibbs in the early twentieth century. It should be
mentioned that this theory, that is now pertfectly accepted, met considerable hostility in its
early days. The first part of this book will give a short introduction to the theory of statistical
mechanics.

It is not a coincidence that at the same time when statistical mechanics was created,
another new discipline of physics emerged, that of quantum mechanics. Quantum mechanics
was concerned with the inadequacies of classical mechanics on the level of microscopic
physics. in particular the theory of atoms. and thus concerned the opposite side of what
statistical mechanics is about. Interestingly. quantum mechanical effects could explain some
deviations of the predictions of statistical mechanics from experimental observation (e.g.
the problem of black body radiation that was resolved by Planck’s quantum hypothesis). The
basic principles of statistical mechanics can be well reconciled with quantum mechanics
and give rise the the theory of quantum statistical mechanics. However, in many cases. a
full quantum mechanical treatment of statistical mechanics turns out to be unnecessary, and
much of classical mechanics applies with just some minor changes. In any case, we will
here consider only the classical theory. Before approaching our main subject, let us have a
very brief look at thermodynamics.

1.1 Thermodynamics

A mechanical system is characterized by essentially geometric quantities, the positions and
velocities of its components (which are points of mass). If solid objects are described, the
assumption of rigidity allows us to reduce their description to essentially the same kind of
coordinates. Such a description does not, however. do complete justice to all the objects we
can observe. Even solids are not really rigid, and may change their shape. Moreover, there
are liquids. and gases, for which such a description breaks down completely. Finally, there
are properties of real objects beyond their positions or velocities that may interfere with their
mechanical properties, in particular their remperature. In fact, in a dissipative system one
may observe that the temperature of a decelerating body often increases. Thermodynamics
introduces a description of such new internal variables of the system and devises a theory
allowing us to control the associated flow of energy.

The standard classical setting of thermodynamics is geared to the behaviour of a
gas. A gas is thought to be enclosed in a container of a given (but possibly variable)
volume, V > 0. This container provides the means of coupling the system to an external
mechanical system. Namely, it one can make the gas change the volume of the container,
the resulting motion can be used to drive a machine. Conversely, we may change the volume
of the container and thus change the properties of the gas inside. Thus, we need a parameter
to describe the state of the gas that reacts to the change of volume. This parameter is called
the pressure, p. The definition of the pressure is given through the amount of mechanical
energy needed to change the volume:?

dEpech = —pdV (1.1)

= The minus sign may appear strange (as do many of the signs in thermodynamics). The point, however, is that
if the volume increases. work is done by the system (transfered somewhere), so the energy of the system
decreases.



