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Preface

This book has been written twice. After having written and published it in
German in 1990, I started all over again and rewrote the whole story for an
English speaking audience. During the first round I received encouraging
words and critical remarks from students and colleagues alike which have
helped to sustain me the second time around.

In the preface the author usually states that his or her book resulted
from a course that he or she gave at some university. I cannot claim that
the present book is any exception to the rule. But I expanded and remodelled
the original material which circulated as a manuscript so that the printed
version would follow a more stringent and coherent architectural plan. In
doing so I have concentrated on the conceptual problems inherent in the
path integral formalism rather than on certain highly specialized techniques
used in applications. Nevertheless, I have also included those methods that
are of fundamental interest and have treated specific problems mainly to
illustrate them.

The text is designed to introduce graduate students to the functional
integration method in contemporary physics as painlessly as possible with-
out their being forced to spend too much time solely in getting oriented in
the mathematical intricacies of measure theory. In the development of the
method, there is a striking interplay between stochastic processes, statistical
physics, and quantum mechanics. This aspect, I felt, should be stressed in a
text on path integration. As for the prerequisites, the student is assumed to
be familiar with quantum mechanics and, on the mathematical side, with
probability theory. Moreover, it is hoped that he or she has grasped the
essentials of quantum field theory and elementary particle physics and is
open minded.

This expository work is certainly not meant to be a substitute for the
conventional operator version of quantum physics: in fact, no attempt has
been made to rewrite parts of quantum mechanics or field theory using the
rather sophisticated language of path integration. Nor is this work a formal
account of all the activities in the field but largely a personal book whose
factual details are organized and dominated by my views.

Since I began thinking about path integration, I owe thanks for their
guidance to more colleagues than I could possibly name here. My special
thanks are due to L.S.Schulman; without him the book could not have
come into existence. I owe a great deal to E. H. Lieb who stopped me from



VIII Preface

making foolish mistakes. I would like to thank R.Haag, J. E. Roberts, and
J. Challifour for their sharpening my understanding of quantum field theory.
I received advice from W. Thirring, W. Beiglbock, A.Uhlmann, L. Streit,
A.Martin, W. Bietenholz, and H. Siedentop. Special thanks go to H. Spohn
and M. Demuth for their wisdom and encouragement. I should also like to
thank my students C. Beck and M. Ringe for valuable discussions during the
preparation of the early draft. I also thank M. Seymour who went carefully
through the final draft and pointed out a number of misprints and suggested
improvements with regard to style and clarity. Last but not least I am
grateful to the Institute for Advanced Study, Princeton, for hospitality.

September 1993 Gert Roepstorff
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1 Brownian Motion

The main advantages of a discrete approach are pedagogical,
inasmuch as one is able to circumvent various conceptual diffi-
culties inherent to the continuous approach. It is also not without
a purely scientific interest [. . .].

Marc Kac

The shortest path between two truths in the real domain passes
through the complex domain.

J. Hadamard

Physics is often seen as being rooted in, and to the present day deals with,
the study of moving bodies. We have every reason to believe that, his-
torically, phenomenological attempts at describing the observed preceded
speculations about the underlying dynamical law. This chapter focuses on
random motion, first described in 1828 by the British botanist R.Brown,
who investigated the pollen of different plants dispersed in water. Years
after the discovery scientists began to realize that any kind of inorganic
substance, not just “living matter”, presents, in principle, the same phe-
nomenon, and thus looked for an explanation. In fact a respectable theory
of Brownian motion emerged much later (not before 1905) as a result of
an interplay between physics and mathematics. At present the prospects
for possible applications! in the exact sciences seem unlimited: the concepts
of Brownian motion are now being used in fields as different as astronomy
(stellar dynamics), diffusion, colloid chemistry, polymer physics, quantum
mechanics, and elementary-particle physics. The surprise is that the scale
of length does not matter at all. Instead what strikes the eye, as a common
characteristic, is some kind of universal mathematical structure. Neverthe-
less, the concept of Brownian motion as a whole together with its highly
specialized tools does not seem to fit into the traditional framework of clas-
sical mechanics as a deterministic theory that, according to a dictum of
A. Sommerfeld, represents the “backbone of mathematical physics”.

The apparent irregular motion that we shall describe, nondeterministic
as it may be, does not take place without obeying certain rules, and it
took the genius of A.Einstein to notice and apply these rules successfully.
Through his pioneering work [1.2] the theory of Brownian motion acquired
a firm position within the fabric of physics.

L A collection of early significant contributions is presented in [1.1].



2 1 Brownian Motion

1.1 The One-Dimensional Random Walk

The principal features of the problem of the random walk can be elucidated
by analyzing the simplest of all cases: the erratic motion of a single point
particle in one dimension [1.3]. Imagine the particle suffers displacements
along the z-axis in the form of a series of steps of the same length h, each
step being taken in either direction within a certain period of time, say of
length 7. In essence, one may think of both space and time as being replaced
by sequences of equidistant marks: from now on we shall call such models
discrete.

In addition, supposing that there is no physical factor preferring right
over left, we may postulate that forward and backward steps occur with
equal probability % Successive steps are assumed to be statistically inde-
pendent. Hence, the probability is

1 . . S
P(ih—jh,T):{E if [i —j| =1 (i,j € Z) (1.1.1)
0 otherwise

for a transition from z = jh to the new position z = ih during the time 7.

In still other words and at a higher level, what we have before us is an
example of a stochastic process, more precisely, of a Markov chain with a
denumerable set of states [1.4]. The process has two obvious properties. It
is

homogeneous: the transition probability P is merely a function of the
difference 7 — j; and

isotropic: the transition probability does not depend on the direction
in space, i.e., P is left unchanged if we replace (i, 7) by (—i, —j).

Quite generally, a Markov chain may be characterized by a pair (P, p),
where P = (P;;) stands for what is called a transition matriz and p = (p;)
is the initial probability distribution. In simpler terms: p; is the probability
of the event i occurring at starting time ¢ = 0. One always has 0 < p; < 1,
>.pi =1,0< Pj; <1,and ), P;; = 1. As for our example, the event
i is identified with the particle’s position z = ih and the matrix P has
components

P,; = P(ih — jh, 7). (1.1.2)

Caution: this matrix is doubly infinite, —oco < 7,5 < oo, and from another
point of view it seems more appropriate to call it an operator.

After the elapse of time nt (n € IN) the accumulated transition proba-
bilities are

P(ih — jh,nt) = (P")i;, (1.1.3)

where P* = P - P--- P (n factors) stands for the n-fold matrix product.
What about the initial distribution? If, at time ¢ = 0 the position of the
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particle is known with certainty, say * = 0, we have p; = 0 for ¢ # 0
and po = 1. After time n7 > 0, the system has evolved and produced a
new distribution which is P™"p. As a matter of convenience, p and P"p are
treated here as vectors. Phrased differently, as a function of n, P" is the
operator of evolution for the system, where we regard n as the relevant time
variable. Within this setting, time never assumes negative values.

The operators

B= L= (1.1.4)

shift the particle’s position to the right and left respectively by the amount
h. Obviously, L = R~! and thus RL = LR. This clarifies the structure of
the operator P and its powers: first notice that

P=1(R+1L) (1.1.5)
and then write
1 < /n
P"= o > (k) RFL"F (1.1.6)
k=0

to obtain the transition probabilities after n time steps:

P(ih — jh,nT) = 2%(:) i—j=k—(n—k). (1.1.7)

By appeal to the recursion formula for the binomial coefficients,

"=+ () s

one gets the following remarkable difference equation:
P(z,t+7)=1P(z+h,t)+ 3 P(z — h,t) (1.1.9)
with ¢ = (¢ — j)h and t = n7. Equation (1.1.9) may be rewritten as

P(z,t+71)— P(z,t) _ h* P(z+h,t) = 2P(z,t) + P(z — h,1)
T % h?

.(1.1.10)

The point is, the difference equation has got pretty close to some differential
equation. Now, think of h and 7 as microscopic quantities and pass to a
macroscopic (large scale) description of a random walk by a limiting process
h — 0, 7 — 0 with
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hZ

=, 1.1.11
2T ( )

the diffusion constant, held fixed. This process turns z und ¢ into continuous
variables: x € R , t € IR} which conforms much better with our normal view
of space and time. As a highly satisfactory result, we obtain from (1.1.10)
the one-dimensional diffusion equation?:

—B—P( t)—Da—zP( t) (1.1.12)
P @t)=Dams z,t). 1.

The results of a computer simulation of the one-dimensional diffusive motion
using two different diffusion constants are shown in Fig.1.1.

Equation (1.1.12) and its multidimensional variants form the basis of
Einstein’stheory of Brownian motion. As a result of the limiting procedure,
no meaning can be attributed to the velocity of the Brownian particle. This
is clearly indicated by h/7 — oo. Phrased in more mathematical terms:
though continuous, a typical Brownian path is nowhere differentiable as a
function of time.

Einstein reasoned that the diffusion constant should be of the form D = kgT/f,
where kg, T', and f are Boltzmann’s constant, the temperature, and the friction constant
respectively. For f he used Stokes’s law f = 6man for a single, rigid, spherical particle
of radius a inserted into a fluid of viscosity 1. The radius of the Brownian particle is
to be taken large compared to both the radius of the bombarding solvent molecules and
their mean free path. Next, Einstein suggested using the mean square displacement for a
Brownian particle starting at the origin, (z2) = 2Dt, to determine the diffusion constant
D, which, when we know a and 7, ultimately yields a value for Avogadro’s constant N
since kg = R/N. Consistency with other ways of obtaining N showed once more the
validity of the molecular kinetic theory and thus the reality of atoms.

Einstein’s relation between D and f represents the first instance of the fluctuation—
dissipation connection of statistical physics: a fluctuation (the mean square displacement
per unit time) is connected with a dissipative quantity (the friction constant).

The diffusion equation and the heat equation formally look the same.
However, there is a distinction in the interpretation of the function P(z,t)
and the constant D. The reader familiar with the theory of heat conduction
knows that the solution of the initial value problem Py(z,0) = 6(x) is the
Gauss function

Py(z,t) = (t > 0). (1.1.13)

1 { z? }
e S
2v/mDt 4Dt
In terms of Brownian motion this choice of initial data means that the
particle starts at the origin. By the classical theorem of Laplace and De
Moivre, i.e., convergence of the binomial distribution towards the normal
distribution, the transition probability for the discrete random walk, P,

2 Notice: it is h~1P;; that approaches P(z,t). The extra factor h~! takes care of the
fact that the normalization Zi P;; = 1 changes to fd:x: P(z,t) =1.



