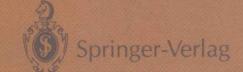
Texts and Monographs in Physics

Gert Roepstorff

Path Integral Approach to Quantum Physics

An Introduction



Path Integral Approach to Quantum Physics

An Introduction

With 26 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Professor Dr. Gert Roepstorff

Institut für Theoretische Physik, Rheinisch-Westfälische Technische Hochschule Aachen RWTH-Physikzentrum, D-52062 Aachen, Germany

Editors

Roger Balian

CEA Service de Physique Théorique de Saclay F-91191 Gif-sur-Yvette, France

Wolf Beiglböck

Institut für Angewandte Mathematik Universität Heidelberg Im Neuenheimer Feld 294 D-69120 Heidelberg, Germany

Harald Grosse

Institut für Theoretische Physik Universität Wien Boltzmanngasse 5 A-1090 Wien, Austria

Elliott H. Lieb

Jadwin Hall Princeton University, P. O. Box 708 Princeton, NJ 08544-0708, USA

Walter Thirring

Institut für Theoretische Physik Universität Wien Boltzmanngasse 5 A-1090 Wien, Austria

Title of the original German edition: Gert Roepstorff – *Pfadintegrale in der Quantenphysik* © Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1991

ISBN 3-540-55213-8 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-55213-8 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Roepstorff, Gert. [Pfadintegrale in der Quantenphysik. English] Path integral approach to quantum physics: an introduction / Gert Roepstorff, p. cm. — (Texts and monographs in physics) Includes bibliographical references and index. ISBN 3-540-55213-8 (Berlin: alk. paper). — ISBN 0-387-55213-8 (New York: alk paper) 1. Integrals, Path. 2. Quantum theory. I. Title. II. Series. QC174.17.P27R6413 1994 530.1'2—dc20 93-43689

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1994 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera ready copy from the author using a Springer TEX macro package

55/3140-543210 - Printed on acid-free paper

Texts and Monographs in Physics

Series Editors:

R. Balian W. Beiglböck H. Grosse E. H. Lieb W. Thirring

Texts and Monographs in Physics

Series Editors:

R. Balian W. Beiglböck H. Grosse E. H. Lieb W. Thirring

From Microphysics to Macrophysics I + II Methods and Applications of Statistical Physics By R. Balian

Variational Methods in Mathematical Physics A Unified Approach By P. Blanchard and E. Brüning

Quantum Mechanics: Foundations and Applications 3rd enlarged edition By A. Böhm

The Early UniverseFacts and Fiction 3rd corrected and enlarged edition By G. Börner

Geometry of the Standard Model of Elementary Particles By A. Derdzinski

Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory By R. Fernández, J. Fröhlich and A. D. Sokal

Quantum Relativity
A Synthesis of the Ideas of Einstein and
Heisenberg
By D. Finkelstein

Quantum Mechanics I + II By A. Galindo and P. Pascual

The Elements of Mechanics By G. Gallavotti

Local Quantum Physics Fields, Particles, Algebras Corrected 2nd printing By R. Haag

Elementary Particle Physics Concepts and Phenomena By O. Nachtmann Inverse Schrödinger Scattering in Three Dimensions By R. G. Newton

Scattering Theory of Waves and Particles 2nd edition By R. G. Newton

Quantum Entropy and Its Use By M. Ohya and D. Petz

Generalized Coherent States and Their Applications By A. Perelomov

Essential Relativity Special, General, and Cosmological Revised 2nd edition By W. Rindler

Path Integral Approach to Quantum Physics An Introduction By G. Roepstorff

Advanced Quantum Theory and Its Applications Through Feynman Diagrams 2nd edition By M. D. Scadron

Finite Quantum Electrodynamics By G. Scharf

From Electrostatics to Optics A Concise Electrodynamics Course By G. Scharf

Large Scale Dynamics of Interacting Particles By H. Spohn

General Relativity and Relativistic Astrophysics By N. Straumann The Dirac Equation By B. Thaller

The Theory of Quark and Gluon Interactions 2nd completely revised and enlarged edition By F. J. Ynduráin

To Ingrid who made it all worthwhile

Preface

This book has been written twice. After having written and published it in German in 1990, I started all over again and rewrote the whole story for an English speaking audience. During the first round I received encouraging words and critical remarks from students and colleagues alike which have helped to sustain me the second time around.

In the preface the author usually states that his or her book resulted from a course that he or she gave at some university. I cannot claim that the present book is any exception to the rule. But I expanded and remodelled the original material which circulated as a manuscript so that the printed version would follow a more stringent and coherent architectural plan. In doing so I have concentrated on the conceptual problems inherent in the path integral formalism rather than on certain highly specialized techniques used in applications. Nevertheless, I have also included those methods that are of fundamental interest and have treated specific problems mainly to illustrate them.

The text is designed to introduce graduate students to the functional integration method in contemporary physics as painlessly as possible without their being forced to spend too much time solely in getting oriented in the mathematical intricacies of measure theory. In the development of the method, there is a striking interplay between stochastic processes, statistical physics, and quantum mechanics. This aspect, I felt, should be stressed in a text on path integration. As for the prerequisites, the student is assumed to be familiar with quantum mechanics and, on the mathematical side, with probability theory. Moreover, it is hoped that he or she has grasped the essentials of quantum field theory and elementary particle physics and is open minded.

This expository work is certainly not meant to be a substitute for the conventional operator version of quantum physics: in fact, no attempt has been made to rewrite parts of quantum mechanics or field theory using the rather sophisticated language of path integration. Nor is this work a formal account of all the activities in the field but largely a personal book whose factual details are organized and dominated by my views.

Since I began thinking about path integration, I owe thanks for their guidance to more colleagues than I could possibly name here. My special thanks are due to L.S.Schulman; without him the book could not have come into existence. I owe a great deal to E.H.Lieb who stopped me from

making foolish mistakes. I would like to thank R. Haag, J. E. Roberts, and J. Challifour for their sharpening my understanding of quantum field theory. I received advice from W. Thirring, W. Beiglböck, A. Uhlmann, L. Streit, A. Martin, W. Bietenholz, and H. Siedentop. Special thanks go to H. Spohn and M. Demuth for their wisdom and encouragement. I should also like to thank my students C. Beck and M. Ringe for valuable discussions during the preparation of the early draft. I also thank M. Seymour who went carefully through the final draft and pointed out a number of misprints and suggested improvements with regard to style and clarity. Last but not least I am grateful to the Institute for Advanced Study, Princeton, for hospitality.

September 1993

Gert Roepstorff

Contents

ı.	Brow	wnian Motion		1
	1.1	The One-Dimensional Random Walk		2
	1.2	Multidimensional Random Walk		6
	1.3	Generating Functions		10
		1.3.1 Return or Escape?		11
	1.4	The Continuum Limit		13
	1.5	Imaginary Time		15
	1.6	The Wiener Process		20
		1.6.1 The Analysis of Random Paths		20
		1.6.2 Multidimensional Gaussian Measure	s	24
		1.6.3 Increments		27
	1.7	Expectation Values		29
	1.8	The Ornstein–Uhlenbeck Process		33
	1.8.1	1 The Oscillator Process		36
2.	The	Feynman–Kac Formula		39
	2.1	The Conditional Wiener Measure		40
	2.1	2.1.1 The Path Integral		41
		2.1.2 The Stochastic Formulation		45
	2.2	The Integral Equation Method		48
		2.2.1 Stochastic Representation of Operat		51
		2.2.2 Stochastic Representation of Green's		53
	2.3	The Lie-Trotter Product Method		54
		2.3.1 The Lie-Trotter Product Formula .	*********	55
		2.3.2 Miscellaneous Remarks and Results		57
		2.3.3 Several Particles with Different Mas	ses	61
	2.4	The Brownian Tube		62
	2.5	The Golden-Thompson-Symanzik Bound .		66
	2.6	Hamiltonians and Their Associated Process	es	74
		2.6.1 Correlation Functions	*********	75
		2.6.2 The Oscillator Process Revisited	********	77
		2.6.3 Nonlinear Transformations of Time		78
		2.6.4 The Perturbed Harmonic Oscillator		79
	2.7	The Thermodynamical Formalism		81
	2.8	A Case Study: the Harmonic Spin Chain		85
		2.8.1 The Inverted Harmonic Oscillator		89

X	Contents
4.2	COLLECTION

	2.9	The Re	flection Principle	91	
		2.9.1	Reflection Groups of Order Two	91	
		2.9.2	Reflection Groups of Infinite Order	94	
	2.10	Feynma	an Versus Wiener Integrals	101	
		2.10.1	Summing over Histories in Configuration Space .	102	
		2.10.2	The Method of Stationary Phase	104	
		2.10.3	Summing over Histories in Phase Space	105	
		2.10.4	The Feynman Integrand as a Hida Distribution .	107	
3.	The	Brownia	n Bridge	109	
	3.1	The Ca	nonical Scaling of Brownian Paths	109	
		3.1.1	The Process \bar{X}_{τ}	112	
		3.1.2	Rescaling of Path Integrals	113	
		3.1.3	The Stochastic Integral with Respect to		
			the Brownian Bridge	114	
	3.2	Bounds	s on the Transition Amplitude	115	
		3.2.1	Defining a Subset of Paths	115	
		3.2.2	The Semiclassical Approximation	117	
		3.2.3	Bounds on the Functional $\Phi(V)$	118	
		3.2.4	Convexity of the Functional $\Phi(V)$	120	
	3.3	Variation	onal Principles	122	
		3.3.1	The Mean Position of a Path	125	
	3.4	Bound	States	126	
		3.4.1	Moment Inequalities for Eigenvalues	135	
	3.5	Monte	Carlo Calculation of Path Integrals	142	
4.	Four	ier Deco	mposition	150	
	4.1	Randor	m Fourier Coefficients	150	
		4.1.1	Fourier Analysis of Time Integrals	151	
	4.2	The W	igner-Kirkwood Expansion		
	of the Effective Potential		-	154	
	4.3	Couple	d Systems	157	
		4.3.1	Open Systems	159	
	4.4	The Dr	riven Harmonic Oscillator	161	
		4.4.1	From Time Integrals to Sums	162	
		4.4.2	From Sums Back to Time Integrals	162	
	4.5	Oscilla	ting Electric Fields	166	
		4.5.1	Poisson Statistics	167	
5.	The Linear-Coupling Theory of Bosons				
	5.1		ntegrals for Bosons	170	
		5.1.1	The Partial Trace and Its Evaluation	172	
	5.2	A Rane	dom Potential for the Electron	175	
	5.3		olaron Problem	177	
			The Limit $L \to \infty$, $b \to 0$	179	

		Contents	XI
		5.3.2 The Free Energy of the Polaron	182
		5.3.3 Bounds on the Polaron Free Energy	183
		5.3.4 Pekar's Large-Coupling Result	185
	5.4	The Field Theory of the Polaron Model	186
	0.4	The Field Theory of the Foldron Woder	100
6.	Mag	netic Fields	192
	6.1	Heuristic Considerations	192
	6.2	Itô Integrals	195
		6.2.1 The Feynman–Kac–Itô Formula	197
		6.2.2 The Semiclassical Approximation	199
	6.3	The Constant Magnetic Field	201
		6.3.1 A Brief Discussion of the Result	204
	6.4	Diamagnetism of Electrons in a Solid	205
	6.5	Magnetic Flux Lines	208
		6.5.1 Winding Numbers	209
		6.5.2 Spectral Decomposition	210
		6.5.3 Imaginary Times	212
			4.1.00
7.		idean Field Theory	215
	7.1	What is a Euclidean Field?	216
	7.2	The Euclidean Two-Point Function	218
	7.3	The Euclidean Free Field	222
		7.3.1 The <i>n</i> -Point Functions	222
		7.3.2 The Stochastic Interpretation	225
	7.4	Gaussian Functional Integrals	227
	7.5	Basic Postulates	233
		7.5.1 The Hamiltonian	236
		7.5.2 The Free Field Revisited	238
3.	Field	Theory on a Lattice	242
	8.1	The Lattice Version of the Scalar Field	242
	8.2	The Euclidean Propagator on the Lattice	245
	0.2	8.2.1 The Fourier Representation	$\frac{245}{245}$
		8.2.2 Random Paths on a Lattice	250
	8.3	The Variational Principle	250
	0.0	8.3.1 The Case of a Discrete Configuration Space	252
		8.3.2 The Deterministic Limit	254
		8.3.3 Continuous Configuration Space	255
		8.3.4 The Classical Limit	257
		8.3.5 Fluctuations Around the Classical Solution	$\frac{257}{258}$
	8.4		$\frac{258}{260}$
	8.5	The Effective Action The Effective Potential	$\frac{260}{265}$
	0.0	8.5.1 Spontaneous Breakdown of Symmetry	266 266
		8.5.2 Order Parameters	$\frac{260}{267}$
	8.6	The Ginzburg–Landau Equations	268
	0.0	The Ginzburg-Dandau Equations	400

	8.7 The Mean-Field Approximation		272
		8.7.1 The Curie–Weiss Approximation	
		of the Ising Model	274
		8.7.2 The Ising Spin Limit of the Neutral Scalar Field	277
	8.8	The Gaussian Approximation	278
		8.8.1 A Case Study	278
9.	The	Quantization of Gauge Theories	281
	9.1	The Euclidean Version of Maxwell Theory	281
		9.1.1 The Classical Situation $(\hbar = 0)$	282
		9.1.2 Gauge Fixing	285
		9.1.3 The Quantized Situation $(\hbar > 0)$	287
	9.2	Non-Abelian Gauge Theories: Preliminaries	289
	9.3	The Faddeev–Popov Quantization	292
		9.3.1 Division by $ \mathcal{G} $	295
		9.3.2 Faddeev-Popov Ghosts	297
	9.4	Gauge Theories on a Lattice	300
	9.5	Wegner-Wilson Loops	306
		9.5.1 The Static Approximation in Minkowskian	
		Field Theory	306
		9.5.2 Loop Variables in Euclidean QED	308
		9.5.3 Area Law or Perimeter Law?	310
	9.6	The $SU(n)$ Higgs Model	312
10.	Ferm	iions	316
	10.1	The Dirac Field in Minkowski Space	316
	10.2	The Euclidean Dirac Field	319
		10.2.1 External Vector Potentials	324
	10.3	Grassmann Algebras	326
		10.3.1 When E is a Function Space	329
	10.4	Formal Derivatives	331
	10.5	Formal Integration	334
		10.5.1 Integrals in $A(E)$	334
		10.5.2 Integrals in $A(E \oplus F)$	336
		10.5.3 Integrals of the Exponential Type	337
		10.5.4 The Fourier–Laplace Transformation	339
	10.6	Functional Integrals of QED	342
	10.7	The $SU(n)$ Gauge Theory with Fermions	346
Ap	pendic	ces	
	A	List of Symbols and Glossary	349
	В	Frequently Used Gaussian Processes	357
	C	Jensen's Inequality	360
	D	A Table of Path Integrals	362

	Contents	XIII
References		369
Index		383

1 Brownian Motion

The main advantages of a discrete approach are pedagogical, inasmuch as one is able to circumvent various conceptual difficulties inherent to the continuous approach. It is also not without a purely scientific interest [...].

Marc Kac

The shortest path between two truths in the real domain passes through the complex domain.

J. Hadamard

Physics is often seen as being rooted in, and to the present day deals with, the study of moving bodies. We have every reason to believe that, historically, phenomenological attempts at describing the observed preceded speculations about the underlying dynamical law. This chapter focuses on random motion, first described in 1828 by the British botanist R. Brown, who investigated the pollen of different plants dispersed in water. Years after the discovery scientists began to realize that any kind of inorganic substance, not just "living matter", presents, in principle, the same phenomenon, and thus looked for an explanation. In fact a respectable theory of Brownian motion emerged much later (not before 1905) as a result of an interplay between physics and mathematics. At present the prospects for possible applications¹ in the exact sciences seem unlimited: the concepts of Brownian motion are now being used in fields as different as astronomy (stellar dynamics), diffusion, colloid chemistry, polymer physics, quantum mechanics, and elementary-particle physics. The surprise is that the scale of length does not matter at all. Instead what strikes the eye, as a common characteristic, is some kind of universal mathematical structure. Nevertheless, the concept of Brownian motion as a whole together with its highly specialized tools does not seem to fit into the traditional framework of classical mechanics as a deterministic theory that, according to a dictum of A. Sommerfeld, represents the "backbone of mathematical physics".

The apparent irregular motion that we shall describe, nondeterministic as it may be, does not take place without obeying certain rules, and it took the genius of A. Einstein to notice and apply these rules successfully. Through his pioneering work [1.2] the theory of Brownian motion acquired a firm position within the fabric of physics.

¹ A collection of early significant contributions is presented in [1.1].

1.1 The One-Dimensional Random Walk

The principal features of the problem of the random walk can be elucidated by analyzing the simplest of all cases: the erratic motion of a single point particle in one dimension [1.3]. Imagine the particle suffers displacements along the x-axis in the form of a series of steps of the same length h, each step being taken in either direction within a certain period of time, say of length τ . In essence, one may think of both space and time as being replaced by sequences of equidistant marks: from now on we shall call such models discrete.

In addition, supposing that there is no physical factor preferring right over left, we may postulate that forward and backward steps occur with equal probability $\frac{1}{2}$. Successive steps are assumed to be statistically independent. Hence, the probability is

$$P(ih - jh, \tau) = \begin{cases} \frac{1}{2} & \text{if } |i - j| = 1\\ 0 & \text{otherwise} \end{cases}$$
 $(i, j \in \mathbb{Z})$ (1.1.1)

for a transition from x = jh to the new position x = ih during the time τ .

In still other words and at a higher level, what we have before us is an example of a stochastic process, more precisely, of a *Markov chain* with a denumerable set of states [1.4]. The process has two obvious properties. It is

homogeneous: the transition probability P is merely a function of the difference i - j; and

isotropic: the transition probability does not depend on the direction in space, i.e., P is left unchanged if we replace (i, j) by (-i, -j).

Quite generally, a Markov chain may be characterized by a pair (P, p), where $P = (P_{ij})$ stands for what is called a transition matrix and $p = (p_i)$ is the initial probability distribution. In simpler terms: p_i is the probability of the event i occurring at starting time t = 0. One always has $0 \le p_i \le 1$, $\sum_i p_i = 1$, $0 \le P_{ij} \le 1$, and $\sum_i P_{ij} = 1$. As for our example, the event i is identified with the particle's position x = ih and the matrix P has components

$$P_{ij} = P(ih - jh, \tau). \tag{1.1.2}$$

Caution: this matrix is doubly infinite, $-\infty < i, j < \infty$, and from another point of view it seems more appropriate to call it an *operator*.

After the elapse of time $n\tau$ $(n \in \mathbb{N})$ the accumulated transition probabilities are

$$P(ih - jh, n\tau) = (P^n)_{ij}, \tag{1.1.3}$$

where $P^n = P \cdot P \cdots P$ (*n* factors) stands for the *n*-fold matrix product. What about the initial distribution? If, at time t = 0 the position of the particle is known with certainty, say x = 0, we have $p_i = 0$ for $i \neq 0$ and $p_0 = 1$. After time $n\tau \geq 0$, the system has evolved and produced a new distribution which is $P^n p$. As a matter of convenience, p and $P^n p$ are treated here as vectors. Phrased differently, as a function of n, P^n is the operator of evolution for the system, where we regard n as the relevant time variable. Within this setting, time never assumes negative values.

The operators

shift the particle's position to the right and left respectively by the amount h. Obviously, $L = R^{-1}$ and thus RL = LR. This clarifies the structure of the operator P and its powers: first notice that

$$P = \frac{1}{2}(R+L) \tag{1.1.5}$$

and then write

$$P^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} R^{k} L^{n-k}$$
 (1.1.6)

to obtain the transition probabilities after n time steps:

$$P(ih - jh, n\tau) = \frac{1}{2^n} \binom{n}{k}, \qquad i - j = k - (n - k).$$
 (1.1.7)

By appeal to the recursion formula for the binomial coefficients,

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1},\tag{1.1.8}$$

one gets the following remarkable difference equation:

$$P(x,t+\tau) = \frac{1}{2}P(x+h,t) + \frac{1}{2}P(x-h,t)$$
(1.1.9)

with x = (i - j)h and $t = n\tau$. Equation (1.1.9) may be rewritten as

$$\frac{P(x,t+\tau) - P(x,t)}{\tau} = \frac{h^2}{2\tau} \frac{P(x+h,t) - 2P(x,t) + P(x-h,t)}{h^2}.(1.1.10)$$

The point is, the difference equation has got pretty close to some differential equation. Now, think of h and τ as microscopic quantities and pass to a macroscopic (large scale) description of a random walk by a limiting process $h \to 0$, $\tau \to 0$ with

$$D = \frac{h^2}{2\tau} \ , \tag{1.1.11}$$

the diffusion constant, held fixed. This process turns x und t into continuous variables: $x \in \mathbb{R}$, $t \in \mathbb{R}_+$ which conforms much better with our normal view of space and time. As a highly satisfactory result, we obtain from (1.1.10) the one-dimensional diffusion equation²:

$$\frac{\partial}{\partial t}P(x,t) = D\frac{\partial^2}{\partial x^2}P(x,t). \tag{1.1.12}$$

The results of a computer simulation of the one-dimensional diffusive motion using two different diffusion constants are shown in Fig.1.1.

Equation (1.1.12) and its multidimensional variants form the basis of Einstein's theory of Brownian motion. As a result of the limiting procedure, no meaning can be attributed to the velocity of the Brownian particle. This is clearly indicated by $h/\tau \to \infty$. Phrased in more mathematical terms: though continuous, a typical Brownian path is nowhere differentiable as a function of time.

Einstein reasoned that the diffusion constant should be of the form $D=k_{\rm B}T/f$, where $k_{\rm B},T$, and f are Boltzmann's constant, the temperature, and the friction constant respectively. For f he used Stokes's law $f=6\pi a\eta$ for a single, rigid, spherical particle of radius a inserted into a fluid of viscosity η . The radius of the Brownian particle is to be taken large compared to both the radius of the bombarding solvent molecules and their mean free path. Next, Einstein suggested using the mean square displacement for a Brownian particle starting at the origin, $\langle x^2 \rangle = 2Dt$, to determine the diffusion constant D, which, when we know a and η , ultimately yields a value for Avogadro's constant N since $k_{\rm B}=R/N$. Consistency with other ways of obtaining N showed once more the validity of the molecular kinetic theory and thus the reality of atoms.

Einstein's relation between D and f represents the first instance of the fluctuation—dissipation connection of statistical physics: a fluctuation (the mean square displacement per unit time) is connected with a dissipative quantity (the friction constant).

The diffusion equation and the heat equation formally look the same. However, there is a distinction in the interpretation of the function P(x,t) and the constant D. The reader familiar with the theory of heat conduction knows that the solution of the initial value problem $P_0(x,0) = \delta(x)$ is the Gauss function

$$P_0(x,t) = \frac{1}{2\sqrt{\pi Dt}} \exp\left\{-\frac{x^2}{4Dt}\right\}$$
 (t > 0). (1.1.13)

In terms of Brownian motion this choice of initial data means that the particle starts at the origin. By the classical theorem of Laplace and De Moivre, i.e., convergence of the binomial distribution towards the normal distribution, the transition probability for the discrete random walk, P,

Notice: it is $h^{-1}P_{ij}$ that approaches P(x,t). The extra factor h^{-1} takes care of the fact that the normalization $\sum_i P_{ij} = 1$ changes to $\int dx \, P(x,t) = 1$.