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Preface

More than three score years ago, high-energy physicists were driven to
scrutinize the properties of the cosmic radiation then available (i.e. cos-
mic rays). Today the same situation is realized not only with cosmic rays
but also with different cosmological data: most notably, with the Cosmic
Microwave Background (CMB in what follows). While I am writing this
preface, European science is at the forefront of the developments in high-
cnergy physics and cosmology thanks to the Large Hadron Collider program
and thanks also to the Planck explorer mission. Today laboratory physics
and celestial physics give us contradictory indications: it seems that all the
matter accessible to terrestrial laboratory experiments contributes only 5%
to the total energy budget of the Universe.

Cosmologists and astrophysicists today cannot ignore the knowledge of
the micro-world provided by high-energy physics. In similar terms, high-
energy physicists cannot avoid being exposed to some of the key concepts in
modern gravitation and cosmology. While grand unifications of all funda-
mental forces are one of the intriguing hopes suggested by current theoret-
ical speculations, the opportunity of a small unification lies already before
us in the years to come: the construction of a common language which will
allow, in the near future, a more effective exchange of information and ideas
between contiguous branches of the physics community. The present book
seeks to be a modest contribution to this mighty endeavor.

This book grew through the last decade because of various series of
lectures that were either directly or indirectly connected to CMB physics
and, more generally, to gravitation. In the last couple of years I came to the
conclusion that an effective way of presenting a cosmology course (either for
last year undergraduate or for PhD students) is to use CMB as a guiding
theme. While lecturing to PhD students I have been confronted with the
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problem of giving a sufficiently accurate and updated information to an
audience that was, very often, rather composite. Not all PhD students
were exposed to General Relativity or field theory in their undergraduate
courses. Similarly, not all PhD students have a preliminary knowledge of
astrophysics. I have tried, therefore, to present the material in a reasonably
self-contained manner also in view of the time limitations imposed by a PhD
course.

My warm acknowledgment goes to the Enrico Fermi center for a senior
research grand entitled From the Planck Scale to the Hubble Radius. With-
out this support my efforts would have been forlorn. In commencing this
script I wish also to express my very special and sincere gratitude to Prof.
G. Cocconi and Prof. E. Picasso. I am indebted to G. Cocconi for his
advice in the preparation of the first section. I am indebted to E. Picasso
for delightful discussions which have been extremely relevant both for the
selection of topics and for the overall quality of the manuscript.

Massimo Giovanning
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Physics and the Formulation of the
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Chapter 1

Why CMB Physics?

When approaching a new subject of study, especially within the realm of
empirical sciences, the relevant question to ask is always the same: why
should we learn about this? So, why should we learn about CMB physics?
To answer this kind of questions one might be tempted to invoke either
historical or subjective arguments. For instance one could say that, histor-
ically, blackbody emission is rather interesting in itself since it represented,
at the dawn of the century, one of the fragile bridges that allowed us to pass
from a classical description of macroscopic phenomena to the quantum me-
chanical language which is today the most appropriate for the discussion
of microscopic physics. On a more aesthetic (and hence subjective) level,
one could also affirm that blackbody emission is beautiful since it depends
only upon one crucial parameter, i.e. the temperature. Subjectivity in sci-
ence is very important since it drives the enthusiasm of researchers towards
new and exciting fields of investigation. At the same time any subjective
self-excitation should be gauged by more objective elements of judgment.
Objectivity, for natural scientists, rhymes with testability. The quest for
objectivity does not imply the lack of fantasy but, on the contrary, it just
focuses our theoretical endeavor.

In this introductory chapter the theme will be to stress that there
are objective elements that make CMB physics one of the most attrac-
tive and promising frameworks for gathering indirect informations on the
carly stages of the life of our own Universe. After a general introduction to
blackbody emission, the motivations of this script will be spelled out. The
bottom line will be that, indeed, the CMB is cosmological and represents
the dominant component of the detected extra-galactic emission.

The whole observable Universe will therefore be approached, in the first
approximation, as a system emitting electromagnetic radiation. The topics
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to be treated in the present chapter are therefore the following:

electromagnetic emission of the Universe;

the blackbody spectrum;

a bit of history of the CMB observations;

the entropy of the CMB and its implications;
the time evolution of the CMB temperature;

a quick glance at the Sunyaev-Zeldovich effect.

All along this script the natural system of units will be adopted. In this
system

h=c=kp=1, (1.1)

where h = h/2m, ¢ is the speed of light and kg is the Boltzmann constant.
In order to pass from one system of units to the other it is useful to recall
that

he = 197.327 MeV fin;
K =8.617 x 10~ % eV;
(he)? = 0.389 GeV? mbarn;
e =2.99792 x 10'° cm/sec.

In Fig. 1.1 arather intriguing plot summarizes the electromagnetic emission
of our own Universe. Only the extra-galactic emissions are reported.* On
the horizontal axis we have the logarithm of the energy of the photons
(expressed in ¢V). On the vertical axis we reported the logarithm (to base
10) of Q. (E) which is defined as

L dp,

Q — .
H(E) Perit dIn B

(1.2)

The specific form of Q. (E) in the case of the CMB branch of the spectrum
will be discussed in the following section (see, for instance, Eq. (1.12)).
For the moment it suffices to note that 2, (E) measures the energy density
of the emitted radiation in critical units. The critical energy density perit
can be understood, grossly speaking, as the mean energy density of the
Universe, i.e. for the current values of the cosmological parameters, the
energy density equivalent to about six proton masses per cubic meter (see,
for instance, Eq. (1.11)).

2By extra-galactic emissions we mean radiation coming from the outside of our galaxy.
Of course, as stressed later on, it must be borne in mind that our own galaxy is also an
efficient emitter of electromagnetic radiation.




