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PREFACE

This book is intended as an introduction to linear algebra for the good
undergraduate novice mathematics student. It is almost entirely self-contained,
including even a rather extensive treatment of elementary set theory. An
unimportant assumption is made that the student has some familiarity with
elementary differential and integral calculus—unimportant because the only
references in the text to this subject appear in illustrative examples and not in
the main body.

On the other hand the mathematical viewpoint of the text is basically rather
sophisticated and abstract, the underlying philosophy being that this approach
is ultimately more meaningful and useful. For example, linear equations are
treated near the end of the book rather than near the beginning, the entire
machinery of vector spaces and linear transformations having already been
established in some detail. For another example, emphasis is placed on the
geometric aspects of linear algebra. Thus determinants are introduced as
scalar changes in volume effected by linear transformations.

To bridge the gap between the mathematical sophistication of the text and
that of the student, a good deal of the text is devoted to motivational exposition.
For example, the notion of vector-space isomorphism is heuristically examined
in great detail. Or, for another example, before the standard abstract definition
of determinant is presented (in terms of alternating n-linear forms), the entire
concept is developed on a concrete level in terms of actual oriented area of
oriented parallelograms in two-dimensional real Euclidean space. Exercises
carry the student further, via oriented volume of oriented parallelepipeds, to
three-dimensional real Euclidean space.

One result of this gap-bridging is a text that is, in toto, too long for a one-
semester course. Nevertheless, by judicious omission of certain sections or
portions of sections the numbers of which are indicated by daggers (f), most
of the important topics in the text can be covered in one semester. Below we
list two possible distributions of course time for text material. The column on
the left covers, in one form or another, most of the basic concepts of the text.
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The column on the right describes a course of more limited scope, more leisurely
in nature, thus permitting the student more time to absorb and explore the
elementary linear algebra ideas in greater depth. Needless to say, students with
a reasonably good background in set theory may skip Chapter 2, after a cursory
reading to acquaint themselves with the notation and terminology used in the
text. For such students, a more ambitious program is, of course, possible.

Number of Weeks
Chapter Option 1 Option 2
(with omissions) (without omissions)

1 3 —
2 2 3
3 3 4
4 4 4
5 2 4
6 2+ —
7 1+ —

The exercises are designed to be supplementary to text material. Occasion-
ally, an exercise is an important extension of text material, perhaps cited sub-
sequently in the text. In such a case, the exercise is indicated by an asterisk
after its number.

At this point I would like to thank Mrs. Ollie Cullers, Mrs. Marjorie Proaper,
and Mrs. Ellen Varney for their good typing, and my wife for her help at the
final stages of manuscript preparation.

PETER J. KAHN



CONTENTS

PREFACE

CHAPTER 1 /INTRODUCTION TO LINEARITY

CHAPTER 2 / SETS AND FUNCTIONS
/ Sets 17
/ Functions 40
Counting 67
Induction 75

CHAPTER

Definitions and Examples 80

Products and Powers of Vector Spaces

Vector Subspaces, Subspace Sums, and
Subspace Products 100

W= MW~

/
/
/ VECTOR SPACES
/
/
/

wn A

Linear Dependence and Independence,
Bases and Dimension 115

LINEAR TRANSFORMATIONS
Basic Definitions and Results 158

CHAPTER

Duality in Vector Spaces 201
Linear Transformations and Matrices

CHAPTER
Introduction and Qualitative Analysis

Lo~ o~
— e T T

Determinants 283

vii

Construction of Linear Transformations

96

/ Hyperplanes and Quotients of Vector Spaces
/

195

217

ix

17

80

108

158

LINEAR EQUATIONS AND DETERMINANTS 247
247

Elimination of Variables or Row Reduction 256



viil

CONTENTS

CHAPTER 6 / INNER PRODUCT SPACES

1
2

3
CHAPTER 7

NN W —

INDEX

/
/

—— e e T

Angles and Distances in R? and in C 346

Bilinear Forms, Conjugate-Bilinear Forms, and
Inner Products 358

Inner Product Spaces 383

CANONICAL FORMS

The Effect of a Basis Change 401

Invariant Subspaces 406

Triangular Form 409

Polynomials and Invariant Subspaces 416
Diagonal Forms—the Spectral Theorem 428

345

400

447



INTRODUCTION
CHAPTER 1 TO

LINEARITY

It is widely recognized today that the concept of linearity is fundamental
to most of modern mathematics, both abstract and applied. This chapter is
intended to give the reader some idea of the scope of this concept. We shall
avoid precise general definitions here. Instead, we proceed by presenting briefly
a number of examples that involve the concept of linearity, pausing now and
then to direct the attention of the reader to some of the relevant features of the
examples.

There are two equally important ways of looking at linearity. We can think
of it as a property of certain sets, or as a property of certain functions. In
Chapter 2 we discuss the abstract notions of sets and functions in detail. For
our purpose now, only a rough intuitive understanding of these ideas is neces-
sary. The reader who is totally unfamiliar with them, however, should look at
Definitions 2.1 and 2.15 before continuing.

First, we shall look at some examples of linear sets (as we shall call them
temporarily).

(a) We begin with the set of all real numbers, which, henceforth, we call
“R.” Given any two real numbers x and y, their sum, x + y, and product, xy,
are also real numbers. We express these facts by saying that R is closed with
respect to addition and multiplication. Alternatively, we shall say that R is a
linear set (with respect to these operations).

(b) Next, consider a straight line / lying in the Cartesian plane, which we
call “R2,” and passing through the origin (see Figure 1). Suppose that / is not
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2 INTRODUCTION TO LINEARITY/CHAPTER |

vertical. Then, the equation of ¢ is of the form y = ax, for some fixed real
number a.

The line ¢ consists of all ordered pairs of real numbers of the form (x, ax).
Let us agree to define the “sum” of any two ordered pairs of real numbers
(X0, ¥o) and (x;, y,) to be the ordered pair (xo + x;, yo + ¥;). That is,

(x05 ¥0) + (x1, y1) = (Xo + X1, Yo + 1)

Moreover, given any real number r and any ordered pair of real numbers
(x, »), let us agree to define the ““ product ™ of r and (x, y) to be (rx, ry). That is,
r(x, y = (rx, ry).

0, ax) T (, ax)

0,00 (@0 X

FIGURE 1

With these definitions in mind, it is easy to see that the sum of any two points
on £ is again a point on £. For

(X0, axq) + (x1, axy) = (xo + xy, axo + ax;) = (xo + Xy, a(xo + X))
Moreover, every real multiple of a point on # is again a point on /. For
r(x, ax) = (rx, rax) = (rx, a(rx))

We express these facts by saying that / is closed with respect to the operations
of vector addition (i.e., ‘“addition” of ordered pairs of real numbers) and real
multiplication. Again, alternatively, we say that / is a linear set.

(c) The Cartesian plane, R?, discussed above, is also a linear set. It consists
of all ordered pairs of real numbers (x, y). In the above discussion, we defined
the sum of any two such ordered pairs; it is again an ordered pair (of real
numbers). Moreover, every real multiple of an ordered pair of real numbers is
again an ordered pair of real numbers, by our definition of *““real multiple.”



INTRODUCTION TO LINEARITY 3

Therefore, the plane is closed with respect to vector addition and real multi-
plication, and it is, therefore, a linear set.

(d) Let 4 be any nonvacuous set whatsoever, and let R* be the collection
of all real-valued functions defined on 4. That is, a typical member of R% is a
function f whose argument, x, ranges over the set 4 and whose values are
real numbers (i.e., f(x) is a real number, for every x in 4). To describe in what
way R“ can be considered to be a linear set, we shall describe how to add two
members of R4 and how to multiply a member of R4 by any real number.

Let fand g be any members of R*. They are real-valued functions. Therefore,
for any x in A, f(x) and g(x) are real numbers, which we know how to add.
Put briefly, we shall add fand g by adding their function values f(x) and g(x).
In other words, the sum, f + g, of the functions f and g is a certain function
whose value at any given x in A4 is given by f(x) + g(x); that is, (f + g)(x) =
f(x) + g(x). Similarly, we multiply f by a real number » by multiplying the
function values of f by r. That is, rfis a function whose value at x is rf(x) or
(rf)(x) = rf(x).

By definition, then, the sum of any two members of R*, or any real multiple
of a member of R4, is again a member of R%. Therefore, R* has the desired
closure property, and, thus, it is a linear set.

(e) This example is similar to the previous one, but slightly more interesting
and much more important. Let @ and b be any two real numbers, a < b. Let
%|a, b] be the set of all continuous, real-valued functions defined on the closed
interval [a, b]. Define the sum of two such functions and real multiples of such
functions as above. It is a well-known fact from elementary calculus that the
sum of two continuous functions is continuous and that every real multiple of a
continuous function is again continuous. These facts are alternatively expressed
by saying that €[a, b] is closed with respect to addition and real multiplication
of functions. Thus, %|[a, b] is a linear set.

(f) Finally, let a, b be as above, and let 2[a, b] be the set of all real-valued
functions defined on the closed interval [a, b] and possessing a continuous first-
derivative on this interval. Define sums and real multiples of such functions as
above. It is, again, a well-known result of elementary calculus that the sum of
any two members of Z[a, b] and any real multiple of a member of Z]a, b] is
again a member of 2[a, b]. Therefore, Z[a, b] is a linear set.

We urge the reader to notice that in all of the above examples, our descrip-
tion did not stop with the specification of such and such a set. Essential to
our description was the specification of certain operations, which we called
‘““addition™ and ‘‘real multiplication” because of their similarity to the usual
notions of adding and multiplying real numbers. The set was then shown to be
closed with respect to these particular operations. Henceforth, we shall never
consider the description of a linear set to be complete unless the operations are
specified. When referring to the sets R and R?, defined above, we shall always
think of them as linear sets with respect to the operations defined above in
Examples (a) and (c), respectively, unless explicitly stated otherwise.
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EXERCISES /1.1

1. Add the following pairs of real numbers, as prescribed in Example (b), above:
a. (2,4)and (4, 2) d. (2,4) and (3, 6)
b. (2,4) and (—2, —4) e. (2,4) and (5, 7)

5.*

¢c. (0,0) and (4, 2)

Locate each of the pairs and their sum on the Cartesian plane.

Multiply each of the following pairs by 2/3, as prescribed in Example (b), above:
a. (2,4 b. (0, 0) c. 3,—7)

Multiply them by 3/2; by —3/2. Locate them and all three of their multiples
on the Cartesian plane.

Sketch, in the Cartesian plane, the graphs specified by the following equations:

a. y=2x+3 d y=Vv2—x?
b. x=2—3y e. y=0
c. x>+y=4

Each of the above specified graphs is a certain set of ordered pairs of real numbers.
Which of these sets is closed with respect to the operations of adding ordered
pairs of real numbers and of multiplying them by real numbers, as defined in
Example (b)? That is, which of the graphs are linear sets?

Consider the case of a vertical line lying in R?. What is its general equation (using
the standard x, y notation)? Describe the ordered pairs of real numbers that lie
on such a line. Which vertical lines, if any, are closed with respect to the opera-
tions defined in Example (b)?

Show that, if (xo, yo) and (x:, ¥;) are any two ordered pairs of real numbers in R?
not equal to (0, 0) and thought of as opposite vertices of a parallelogram of which
another vertex is (0, 0), then the sum (x,, ¥o) + (x1, 1) [as defined in Example (b)]
is the fourth vertex of the parallelogram. This result provides a geometric inter-
pretation of addition of ordered pairs.

6.* Consider the set of all ordered triples (x, y, z) of real numbers. Define the sum

of two triples, (xo, ¥o, 20) and (xi, yi, z1) by
(X0, Yo, 2o) + (X1, Y1, z1) = (Xo + X1, Yo + V1, Zo + 21),
and, for any real number r, define the product of r and (x, y, z) by

r(x,y, 2) = (rx, ry, rz)

* An asterisk following an exercise number, here and throughout the book, indicates an
exercise that is an important extension of text material (see Preface).
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Now, let a, b, ¢ be any fixed real numbers and consider the set .S of all triples
(x, y, z) satisfying the equation

ax+by+cz=0

Is S closed with respect to the operations defined above? Justify your answer.
Show that the set of all zriples of real numbers is a linear set with respect to the
above operations. Call this set of triples R3. Henceforth, when we refer to R3, we
shall always think of it as a linear set with respect to the operations defined above.

Now, we look at some examples of linear functions (as we shall call them
temporarily).
(g) Consider the function given by the equation

S(x) = 2x,

where the variable x is any real number (that is, any member of R). Let x, and
x; be any given real numbers, and notice that

Sxo + x1) = 2(xp + x;) = 2x0 + 2x; = f(xo + fX;)
Moreover, for any real numbers r and x,

f(rx) =2rx =r(2x) = rf(x)

We express these two properties of f by saying that f respects the operations of
addition and real multiplication. This characteristic of f'is closely related to the
closure property of linear sets. For the graph of fis, of course, just a line
through the origin having slope 2. According to Example (b), above, such a
line is closed with respect to the operations of adding ordered pairs of real
numbers and real multiplication of such ordered pairs. A typical ordered pair
on the line is of the form (x, 2x) = (x, f(x)). The sum of two ordered pairs of
this form is given by

(x0, f(x0)) + (x1, f(x1)) = (X0, 2x0) + (X1, 2x;)
= (xo + Xy, 2x0 + 2x;) = (X0 + X1, 2(xo + Xy))
= (xo + x1, f(x0 + X)),

which is again of the same form. Similarly,

r(x, f(x)) = (rx, rf(x)) = (rx, f(rx)),

which is, again, on the line, for any r. Thus, the fact that f respects the opera-
tions of R is really the same as the fact that the graph of fis a linear set. We
therefore say that fis a /inear function.

(h) Next, we shall define a real-valued function £ whose argument y ranges
over the linear set R* of Example (d)! That is, for every y in R4 (i.e., y is a real-
valued function of a variable x ranging over the set 4), E(y) is going to be a
certain real number.



6 INTRODUCTION TO LINEARITY/CHAPTER |

To define E, we choose an arbitrary member a of the set 4 and hold it fixed
throughout the entire discussion. The real number E(y) is then defined to be
y(a), the value of y for the argument x = a. That is, E(y) = y(a). We chose the
letter ““E” for this function to emphasize the fact that E is an evaluation
function: given any y, E(y) is the evaluation of y at a.

Now, let y, and y, be any two members of R4, Remember that by the
definition in Example (d), the sum y, + y, satisfies

(yo +y1)(@) = yo(a) + y1(a)

In terms of E, this means that E(y, + y;) = E(yo) + E(yy). Similarly, for any
real number r,

(ry)(a) = r(»(a)),

so that E(ry) = rE(y).

In this example, the argument of the function E and the values of E lie in
different sets, R* and R, respectively. In the equation E(y, + y,) = E(y,) +
E(y,), the “+" on the left denotes the ““ addition” in R#, whereas the 4+ on
the right denotes addition in R. We can summarize the equation verbally by
saying that E respects the addition operations of R4 and R. Similarly, E
respects the real multiplication operations of R* and R.

Thus, E is a function that takes values in a linear set and whose argument
ranges over a linear set. Moreover, E respects the operations of these linear
sets. Therefore, we say that E is a linear function.

(i) Consider the linear set €[a, b] of Example (¢). We define a real-valued
function .# whose value #(f), for any given fin €[a, b], is

b
[ £ dx
That is,
b
() = [ f) dx,
for every continuous, real-valued function f defined on the closed interval

[a, b].
Now, let f, and f; be any two such functions. Then, by definition of .,

b
F(fo + 1) = [ (fo +f)(x)dx

b b
= [ fox) dx + [ fulx) dx
= S(fo) + #(f)

In a similar way, we can show that #(rf) = r#(f), for any real number r and
any function fin %[a, b].
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Therefore, £ respects the operations of €[a, b] and R so that it is a linear
function. This example can be summarized briefly by saying that the definite
integral is a real-valued linear function on €|[a, b].

(j) We define a function D whose argument ranges over 2[a, b], the linear
set of Example (f'), and whose values range over the linear set ¥[a, b]. We shall
show that D respects the operations of Z2[a, b] and €[a, b].

Put very simply, for every fin D[a, b], we let D(f) be the first derivative of f.
That is, for every x in [a, b], the value of D(f) at xis f'(x), or (D(f))(x) =f"(x).

We leave it to the reader to show that for any f,, f; and fin Z[a, b], and for
any r in R,

D(fo + /1) = D(fo) + D(f1)
D(rf) =rD(f)

This example can be summarized by saying that differentiation is a linear
Sfunction on D[a, b].

(k) Let f'be any real-valued function of a real variable that has a continuous
first derivative. Choose any real number x,, and consider the tangent line to
the graph of fat (x,, f(x,)) (see Figure 2).

YA

| S S—— o Sl

N

/ \/ (20,0)

FIGURE 2

ol

The equation of this line is
Y = f(x0) = f"(x0)(x — xo)

It is easy to see (cf. Exercises 1.1. 3a, b) that, unless f(x,) = xo f'(xo), the
tangent line is not linear.

However, if we translate the X and Y axes so that (0, 0) goes to (x,, f(xo)),
then the tangent line will go through the origin in the new coordinate system.
We shall call the new Y-axis the ‘‘d Y-axis” and the new X-axis, the *“ d X-axis.”
The corresponding variables are called ““dy” and ““ dx,” respectively. Actually,
we should indicate dependence on x, in some way, but to simplify notation we
avoid explicit reference to x, . The situation is illustrated in Figure 3.



