Giuliano Benenti Giulio Casati Giuliano Strini

Principles of Quantum Computation and Information

Volume II: Basic Tools and Special Topics

World Scientific

Principles of Quantum Computation and Information

Volume II: Basic Tools and Special Topics

Giuliano Benenti and Giulio Casati

Universitá degli Studi dell Insubria, Italy Istituto Nazionale per la Fisica della Materia, Italy

Giuliano Strini

Universitá di Milano, Italy

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

PRINCIPLES OF QUANTUM COMPUTATION AND INFORMATION Volume II: Basic Tools and Special Topics

Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN-13 978-981-256-345-3

ISBN-10 981-256-345-8

ISBN-13 978-981-256-528-0 (pbk)

ISBN-10 981-256-528-0 (pbk)

Giuliano Benenti. Born in Voghera (Pavia), Italy, November 7, 1969. He is a researcher in Theoretical Physics at Università dell' Insubria, Como. He received his Ph.D. in physics at Universita di Milano, Italy and was a postdoctoral fellow at CEA, Saclay, France. His main research interests are in the fields of classical and quantum chaos, open quantum systems, mesoscopic physics, disordered systems, phase transitions, manybody systems and quantum information theory.

Giulio Casati. Born in Brenna (Como), Italy, December 9, 1942. He is a professor of Theoretical Physics at Università dell' Insubria, Como, former professor at Milano University, and distinguished visiting professor at NUS, Singapore. A member of the Academia Europea, and director of the Center for Nonlinear and Complex Systems, he was awarded the F. Somaini Italian prize for physics in 1991. As editor of several volumes on classical and quantum chaos, he has done pioneering research in nonlinear dynamics, classical and quantum chaos with applications to atomic, solid state, nuclear physics and, more recently, to quantum computers.

Giuliano Strini. Born in Roma, Italy, September 9, 1937. He is an associate professor in Experimental Physics and has been teaching a course on Quantum Computation at Universita di Milano, for several years. From 1963, he has been involved in the construction and development of the Milan Cyclotron. His publications concern nuclear reactions and spectroscopy, detection of gravitational waves, quantum optics and, more recently, quantum computers. He is a member of the Italian Physical Society, and also the Optical Society of America.

To Silvia and Arianna g.b.

To my wife for her love and encouragement g.c.

To my family and friends g.s.

About the Cover

This acrostic is the famous *sator* formula. It can be translated as:

'Arepo the sower holds the wheels at work'

The text may be read in four different ways:

- (i) horizontally, from left to right (downward) and from right to left (upward);
- (ii) vertically, downward (left to right) and upward (right to left).

The resulting phrase is always the same.

It has been suggested that it might be a form of secret message.

This acrostic was unearthed during archeological excavation work at Pompeii, which was buried, as well known, by the eruption of Vesuvius in 79 A.D. The formula can be found throughout the Roman Empire, probably also spread by legionnaires. Moreover, it has been found in Mesopotamia, Egypt, Cappadocia, Britain and Hungary.

The *sator* acrostic may have a mystical significance and might have been used as a means for persecuted Christians to recognize each other (it can be rearranged into the form of a cross, with the opening words of the Lord's prayer, *A Paternoster O*, both vertically and horizontally, intersecting at the letter N, the Latin letters A and O corresponding to the Greek letters alpha and omega, beginning and end of all things).

Preface

Purpose of the book

This book is addressed to undergraduate and graduate students in physics, mathematics and computer science. It is written at a level comprehensible to readers with the background of a student near the end of an undergraduate course in one of the above three disciplines. Note that no prior knowledge of either quantum mechanics or classical computation is required to follow this book. Indeed, the first two chapters are a simple introduction to classical computation and quantum mechanics. Our aim is that these chapters should provide the necessary background for an understanding of the subsequent chapters.

The book is divided into two volumes. In volume I, after providing the necessary background material in classical computation and quantum mechanics, we develop the basic principles and discuss the main results of quantum computation and information. Volume I would thus be suitable for a one-semester introductory course in quantum information and computation, for both undergraduate and graduate students. It is also our intention that volume I be useful as a general education for other readers who wish to learn the basic principles of quantum computation and information and who have the basic background in physics and mathematics acquired in undergraduate courses in physics, mathematics or computer science.

Volume II deals with various important aspects, both theoretical and experimental, of quantum computation and information. The areas include quantum data compression, accessible information, entanglement concentration, limits to quantum computation due to decoherence, quantum error correction, and the first experimental implementations of quantum information protocols. This volume also includes a selection of special topics:

chaos and the quantum-to-classical transition, quantum trajectories, quantum computation and quantum chaos, and the Zeno effect. For an understanding of this volume, a knowledge of the material discussed in the first volume is necessary.

General approach

Quantum computation and information is a new and rapidly developing field. It is therefore not easy to grasp the fundamental concepts and central results without having to face many technical details. Our purpose in this book is to provide the reader interested in the field with a useful and not overly heavy guide. Mathematical rigour is therefore not our primary concern. Instead, we have tried to present a simple and systematic treatment, such that the reader might understand the material presented without the need for consulting other texts. Moreover, we have not tried to cover all aspects of the field, preferring to concentrate on the fundamental concepts. Nevertheless, the two volumes should prove useful as a reference guide to researchers just starting out in the field.

To gain complete familiarity with the subject, it is important to practice problem solving. The book contains a large number of exercises (with solutions), which are an essential complement to the main text. In order to develop a solid understanding of the arguments dealt with here, it is indispensable that the student try to solve a large part of them.

Note to the reader

Some of the material presented is not necessary for understanding the rest of the book and may be omitted on a first reading. We have adopted two methods of highlighting such parts:

- 1) The sections or subsections with an asterisk before the title contain more advanced or complementary material. Such parts may be omitted without risk of encountering problems in reading the rest of the book.
- 2) Comments, notes or examples are printed in a small typeface.

Acknowledgments

We are indebted to several colleagues for criticism and suggestions. In particular, we wish to thank Alberto Bertoni, Gabriel Carlo, David Cory, Jürgen Eschner, Paolo Facchi, Rosario Fazio, Giuseppe Florio, Bertrand Georgeot, Luigi Lugiato, Paolo Mataloni, Sandro Morasca, Simone Montangero, Massimo Palma, Saverio Pascazio, Christian Roos, Davide Rossini, Nicoletta Sabadini, Marcos Saraceno, Fabio Sciarrino, Stefano Serra Capiz-

Preface ix

zano, Lorenza Viola and Robert Walters, who read preliminary versions of the book. We are also grateful to Federico Canobbio and Sisi Chen. Special thanks is due to Philip Ratcliffe, for useful remarks and suggestions, which substantially improved our book. Obviously no responsibility should be attributed to any of the above regarding possible flaws that might remain, for which the authors alone are to blame.

Contents – Volume I

Pre	eface			ix
Int	roduc	ction		1
1.	Intr	oductio	on to Classical Computation	9
	1.1	The T	Curing machine	9
		1.1.1	Addition on a Turing machine	12
		1.1.2	The Church–Turing thesis	13
		1.1.3	The universal Turing machine	14
		1.1.4	The probabilistic Turing machine	14
		1.1.5	* The halting problem	15
	1.2	The c	ircuit model of computation	15
		1.2.1	Binary arithmetics	17
		1.2.2	Elementary logic gates	17
		1.2.3	Universal classical computation	22
	1.3	Comp	outational complexity	24
		1.3.1	Complexity classes	27
		1.3.2	* The Chernoff bound	30
	1.4	* Con	nputing dynamical systems	30
		1.4.1	* Deterministic chaos	31
		1.4.2	* Algorithmic complexity	33
	1.5	Energ	y and information	35
		1.5.1	Maxwell's demon	35
		1.5.2	Landauer's principle	37
		1.5.3	Extracting work from information	40
	1.6	Rever	sible computation	41

		9	43
		<u> </u>	45
	1.7	A guide to the bibliography	17
2.	Intr	roduction to Quantum Mechanics	19
	2.1	The Stern–Gerlach experiment	50
	2.2		53
	2.3		57
	2.4		76
	2.5		88
	2.6	-	97
3.	Qua	antum Computation	99
	3.1	The qubit	00
			02
			03
	3.2		05
	3.3		08
			10
	3.4	-	12
			18
	3.5		18
			27
	3.6		30
	3.7		32
	3.8		37
	3.9		40
			41
			43
	3.10		44
		3.10.1 Searching one item out of four	45
		_	47
			49
	3.13		52
			55
			58
			61
			64

~		* * *	
Cont	ents -	Vol	ıme l

xiii

253

	3.16	3.15.1 Quantum simulation of the Schrödinger equation	164 168 170 174 178 179 181
	3 17	A guide to the bibliography	185
	3.17	A guide to the bibliography	100
4.	Qua	antum Communication	189
	4.1	Classical cryptography	189
		4.1.1 The Vernam cypher	190
		4.1.2 The public-key cryptosystem	191
		4.1.3 The RSA protocol	192
	4.2	The no-cloning theorem	194
		4.2.1 Faster-than-light transmission of information?	197
	4.3	Quantum cryptography	198
		4.3.1 The BB84 protocol	199
		4.3.2 The E91 protocol	202
	4.4	Dense coding	204
	4.5	Quantum teleportation	208
	4.6	An overview of the experimental implementations	213
	4.7	A guide to the bibliography	214
Ap	pend	lix A Solutions to the exercises	215
Bib	liogr	aphy	241

Index

Contents - Volume II

$Pr\epsilon$	eface			vii
5.	Qua	intum I	nformation Theory	257
	5.1	The de	ensity matrix	258
		5.1.1	The density matrix for a qubit	264
		5.1.2	Composite systems	267
		5.1.3	* The quantum copying machine	271
	5.2	The Se	chmidt decomposition	273
	5.3		eation	276
	5.4		raus representation	278
	5.5		rement of the density matrix for a qubit	284
	5.6		alized measurements	286
		5.6.1	* Weak measurements	288
		5.6.2	POVM measurements	290
	5.7	The S	hannon entropy	293
	5.8		cal data compression	294
		5.8.1	Shannon's noiseless coding theorem	294
		5.8.2	Examples of data compression	296
	5.9	The vo	on Neumann entropy	297
		5.9.1	Example 1: source of orthogonal pure states	299
		5.9.2	Example 2: source of non-orthogonal pure states	300
	5.10	Quant	um data compression	303
		100	Schumacher's quantum noiseless coding theorem	303
			Compression of an <i>n</i> -qubit message	304
			Example 1: two-qubit messages	306
			Example 2: three-qubit messages	308

	5.11	Access	ible information	311
		5.11.1	The Holevo bound	313
		5.11.2	Example 1: two non-orthogonal pure states	313
		5.11.3	* Example 2: three non-orthogonal pure states $\ \ .$	317
	5.12	Entang	glement concentration and von Neumann entropy	319
	5.13	The P	eres separability criterion	323
	5.14	* Entr	opies in physics	325
		5.14.1	* Thermodynamic entropy	325
		5.14.2	* Statistical entropy	328
		5.14.3	* Dynamical Kolmogorov–Sinai entropy	330
	5.15	A guio	de to the bibliography	333
6.	Dec	oheren	ce	335
	6.1	Decoh	erence models for a single qubit	336
	0.1	6.1.1	The quantum black box	337
		6.1.2	Measuring a quantum operation acting on a qubit	339
		6.1.3	Quantum circuits simulating noise channels	340
		6.1.4	The bit-flip channel	343
		6.1.5	The phase-flip channel	344
		6.1.6	The bit-phase-flip channel	345
		6.1.7	The depolarizing channel	346
		6.1.8	Amplitude damping	347
		6.1.9	Phase damping	349
		6.1.10	De-entanglement	351
	6.2		naster equation	354
		6.2.1	* Derivation of the master equation	355
		6.2.2	* The master equation and quantum operations	359
		6.2.3	The master equation for a single qubit	362
	6.3	Quant	tum to classical transition	365
		6.3.1	Schrödinger's cat	365
		6.3.2	Decoherence and destruction of cat states	367
	6.4	* Dec	oherence and quantum measurements	375
	6.5	* Qua	antum chaos	378
		6.5.1	* Dynamical chaos in classical mechanics	379
		6.5.2	* Quantum chaos and the correspondence principle .	382
		6.5.3	* Time scales of quantum chaos	385
		6.5.4	* Quantum chaos and Anderson localization	392
		6.5.5	* The hydrogen atom in a microwave field	395
		6.5.6	* Quantum chaos and universal spectral fluctuations	400

	6.8	5.7 * The chaos border for the quantum computer hardware	412
	6.5	5.8 * The quantum Loschmidt echo	416
	6.8	5.9 * Dynamical stability of quantum motion	423
	6.8	5.10 * Dynamical chaos and dephasing: the double-slit ex-	
		periment	425
	6.8	5.11 * Entanglement and chaos	430
	6.6 De	ecoherence and quantum computation	434
			439
	6.7 *	Quantum computation and quantum chaos	449
	6.	7.1 * Quantum versus classical errors	451
	6.	7.2 * Static imperfections versus noisy gates	452
	6.8 A	guide to the bibliography	457
7.	Quanti	um Error Correction	459
	7.1 TI	he three-qubit bit-flip code	461
			465
			466
			471
		- S	473
	7.5 *		474
			476
		6.1 * The Hamming codes	478
	7.7 *	CSS codes	481
		ecoherence-free subspaces	484
		8.1 * Conditions for decoherence-free dynamics	486
	7.	8.2 * The spin-boson model	488
	7.9 *	The Zeno effect	490
		ault-tolerant quantum computation	494
		10.1 Avoidance of error propagation	495
		10.2 Fault-tolerant quantum gates	497
		10.3 The noise threshold for quantum computation	497
		Quantum cryptography over noisy channels	500
		Quantum channels with memory	506
	7.13 A	guide to the bibliography	510
8.	First E	Experimental Implementations	513
	8.1 N	MR quantum computation	514
		1.1 The system Hamiltonian	515

	8.1.2	The physical apparatus	518
	8.1.3	Quantum ensemble computation	519
	8.1.4	Refocusing	522
	8.1.5	Demonstration of quantum algorithms	523
8.2	Cavity	y quantum electrodynamics	528
	8.2.1	Rabi oscillations	535
	8.2.2	Entanglement generation	538
	8.2.3	The quantum phase gate	542
8.3	The ic	on-trap quantum computer	544
	8.3.1	The Paul trap	544
	8.3.2	Laser pulses	547
	8.3.3	Realization of the Cirac–Zoller CNOT gate \dots	554
	8.3.4	Entanglement generation	556
8.4	Solid	state qubits	561
	8.4.1	Spins in semiconductors	561
	8.4.2	Quantum dots	562
	8.4.3	Superconducting qubit circuits	566
8.5	Quan	tum communication with photons	573
	8.5.1	Linear optics	573
	8.5.2	Experimental quantum teleportation	578
	8.5.3	Experimental quantum-key distribution	587
8.6	Probl	ems and prospects	591
8.7	A gui	de to the bibliography	592
٨	: D	Calutions to the associate	EOE
Append	IX B	Solutions to the exercises	595
Bibliogr	anhu		657
Divilogi	upity		001
Index			675

Chapter 5

Quantum Information Theory

Classical information theory deals with the transmission of messages (say, binary strings) over communication channels. Its fundamental questions are: How much can a message be compressed and still be transmitted reliably? Can we protect this message against errors that will appear in noisy communication channels? In this chapter, we discuss the above questions in the light of quantum mechanics, which opens up new possibilities for information theory. Before doing so, we need to introduce a few useful tools. The density-matrix formalism is the natural framework in which to treat open and composite quantum systems. We also introduce the concept of generalized measurement and discuss a simple example in which it proves to be useful.

Following this, we review the main results of classical information theory. It turns out that it is possible to compress a message into a shorter string of letters, the compression factor being the Shannon entropy. This is the content of Shannon's celebrated noiseless coding theorem. We discuss the natural extension of this result to quantum mechanics. To this end one may consider a message whose letters are quantum states, transmitted through a quantum communication channel. Such quantum states may be treated as though they were (quantum) information and one might thus ask to what extent this quantum message can be compressed. Schumacher's quantum noiseless coding theorem states that the optimal compression factor is given by the von Neumann entropy. Therefore, the von Neumann entropy is the appropriate measure of quantum information, just as the Shannon entropy is for classical information. If Alice codes a classical message by means of quantum states, it is natural to ask how much information Bob can gain on the message by performing (generalized) measurements on the quantum states received. This is not an easy question since the