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About the Cover

This acrostic is the famous saror formula. It can be translated as:
‘Arepo the sower holds the wheels at work’

The text may be read in four different ways:

(i)  horizontally, from left to right (downward) and from right to left
(upward);
(ii) vertically, downward (left to right) and upward (right to left).

The resulting phrase is always the same.
It has been suggested that it might be a form of secret message.

This acrostic was unearthed during archeological excavation work at
Pompeii, which was buried, as well known, by the eruption of Vesuvius in
79 A.D. The formula can be found throughout the Roman Empire, probably
also spread by legionnaires. Moreover, it has been found in Mesopotamia,
Egypt, Cappadocia, Britain and Hungary.

The sator acrostic may have a mystical significance and might have
been used as a means for persecuted Christians to recognize each other (it
can be rearranged into the form of a cross, with the opening words of the
Lord’s prayer, A Paternoster O, both vertically and horizontally, intersecting
at the letter N, the Latin letters A and O corresponding to the Greek letters
alpha and omega, beginning and end of all things).



Preface

Purpose of the book

This book is addressed to undergraduate and graduate students in physics,
mathematics and computer science. It is written at a level comprehensible
to readers with the background of a student near the end of an under-
graduate course in one of the above three disciplines. Note that no prior
knowledge of either quantum mechanics or classical computation is required
to follow this book. Indeed, the first two chapters are a simple introduction
to classical computation and quantum mechanics. Our aim is that these
chapters should provide the necessary background for an understanding of
the subsequent chapters. _

The book is divided into two volumes. In volume I, after providing
the necessary background material in classical computation and quantum
mechanics, we develop the basic principles and discuss the main results of
quantum computation and information. Volume I would thus be suitable
for a one-semester introductory course in quantum information and com-
putation, for both undergraduate and graduate students. It is also our
intention that volume I be useful as a general education for other readers
who wish to learn the basic principles of quantum computation and infor-
mation and who have the basic background in physics and mathematics
acquired in undergraduate courses in physics, mathematics or computer
science.

Volume II deals with various important aspects, both theoretical and
experimental, of quantum computation and information. The areas include
quantum data compression, accessible information, entanglement concen-
tration, limits to quantum computation due to decoherence, quantum error
correction, and the first experimental implementations of quantum infor-
mation protocols. This volume also includes a selection of special topics:

vii
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chaos and the quantum-to-classical transition, quantum trajectories, quan-
tum computation and quantum chaos, and the Zeno effect. For an under-
standing of this volume, a knowledge of the material discussed in the first
volume is necessary.

General approach

Quantum computation and information is a new and rapidly developing
field. It is therefore not easy to grasp the fundamental concepts and cen-
tral results without having to face many technical details. Our purpose
in this book is to provide the reader interested in the field with a useful
and not overly heavy guide. Mathematical rigour is therefore not our pri-
mary concern. Instead, we have tried to present a simple and systematic
treatment, such that the reader might understand the material presented
without the need for consulting other texts. Moreover, we have not tried to
cover all aspects of the field, preferring to concentrate on the fundamental
concepts. Nevertheless, the two volumes should prove useful as a reference
guide to researchers just starting out in the field.

To gain complete familiarity with the subject, it is important to practice
problem solving. The book contains a large number of exercises (with
solutions), which are an essential complement to the main text. In order
to develop a solid understanding of the arguments dealt with here, it is
indispensable that the student try to solve a large part of them.

Note to the reader

Some of the material presented is not necessary for understanding the rest
of the book and may be omitted on a first reading. We have adopted two
methods of highlighting such parts:

1) The sections or subsections with an asterisk before the title contain
more advanced or complementary material. Such parts may be omitted
without risk of encountering problems in reading the rest of the book.

2) Comments, notes or examples are printed in a small typeface.
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Chapter 5

Quantum Information Theory

Classical information theory deals with the transmission of messages (say,
binary strings) over communication channels. Its fundamental questions
are: How much can a message be compressed and still be transmitted reli-
ably? Can we protect this message against errors that will appear in noisy
communication channels? In this chapter, we discuss the above questions
in the light of quantum mechanics, which opens up new possibilities for in-
formation theory. Before doing so, we need to introduce a few useful tools.
The density-matrix formalism is the natural framework in which to treat
open and composite quantum systems. We also introduce the concept of
generalized measurement and discuss a simple example in which it proves
to be useful. ’

Following this, we review the main results of classical information the-
ory. It turns out that it is possible to compress a message into a shorter
string of letters, the compression factor being the Shannon entropy. This is
the content of Shannon’s celebrated noiseless coding theorem. We discuss
the natural extension of this result to quantum mechanics. To this end
one may consider a message whose letters are quantum states, transmit-
ted through a quantum communication channel. Such quantum states may
be treated as though they were (quantum) information and one might thus
ask to what extent this quantum message can be compressed. Schumacher’s
quantum noiseless coding theorem states that the optimal compression fac-
tor is given by the von Neumann entropy. Therefore, the von Neumann
entropy is the appropriate measure of quantum information, just as the
Shannon entropy is for classical information. If Alice codes a classical mes-
sage by means of quantum states, it is natural to ask how much information
Bob can gain on the message by performing (generalized) measurements
on the quantum states received. This is not an easy question since the
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