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Preface

This monograph gives an introduction to the theory of fractal functions
and fractal surfaces with an application to wavelet theory. The study of frac-
tal functions goes back to Weierstrafy’s nowhere differentiable function and
beyond. However, it wasn’t until the publication of B. Mandelbrot’s book
(cf. [123]) in which the concept of a fractal set was introduced and common
characteristics of these sets were identified (such as nonintegral dimension
and geometric self-similarity) that the theory of functions with fractal graphs
developed into an area of its own. Seemingly different types of nowhere differ-
entiable functions, such as those investigated by Besicovitch, Ursell, Knopp,
and Kiesswetter, to only mention a few, were unified under the fractal point
of view. This unification led to new mathematical methods and applications
in areas that include: dimension theory, dynamical systems and chaotic dy-
namics, image analysis, and wavelet theory.

The objective of this monograph is to provide essential results from the
theory of fractal functions and surfaces for those interested in this fascinat-
ing area, to present new and exciting applications, and to indicate which
interesting directions the theory can be extended. The book is essentially
self-contained and covers the basic theory and different types of fractal con-
structions as well as some specialized and advanced topics such as dimension
calculations and function space theory.

The first part of the book contains background material and consists of
four chapters. The first chapter introduces the relevant notation and termi-
nology and gives a brief review of some of the basic concepts from classical
analysis, abstract algebra and probability theory that are necessary for the
remainder of the book. The reader who is not quite familiar with some of the
material presented in this first chapter is referred to the bibliography where
most of these concepts are defined and motivated. However, efforts were made
to keep the mathematical requirements at a level where a graduate student
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with a solid background in the afore-mentioned areas will be able to work
through most of the book.

The second chapter introduces same basic constructions of fractal sets.
The first is based upon the approach by J. Hutchinson [98] and M. Barnsley
and S. Demko [9] using what is now called an iterated function system. This
method is then generalized and compared to M. Dekking’s [45] construction
of so-called recurrent sets associated with certain semigroup endomorphisms
and C. Bandt’s approach [5, 6] via topological Markov chains. Finally, a
graph-directed fractal construction due to D. Mauldin and S. Williams [134]
is presented. The emphasis is on iterated function systems and their general-
izations; however. In this chapter the foundations for the rigorous treatment
of univariate and multivariate fractal functions are laid.

Next, the concept of dimension of a set is introduced. This is done by
first reviewing the different notions of dimension that are used to characterize
and describe sets. The last two sections in this chapter are devoted to the
presentation of dimension results for self-affine fractal sets.

A short chapter dealing with the fascinating theory of dynamical systems
follows. The emphasis is on the geometric aspects of the theory and it is shown
how they can be used to describe attractors of iterated function systems.

In the second part of this book, univariate and multivariate fractal func-
tions are discussed. The fifth chapter introduces fractal functions as the fixed
points of a Read-Bajraktarevi¢ operator. This approach differs from that un-
dertaken by M. Barnsley [8] who introduced fractal functions for interpolation
and approximation purposes. It is also shown how M. Dekking’s approach to
fractals can be used to define fractal functions and the iterative interpolation
process of S. Dubuc and his co-workers is presented. The remainder of the
chapter deals with different classes of fractal functions and discusses several
of their properties.

Chapter 6 is devoted to dimension calculations. Formulae for the box
dimension of the graphs of most of the fractal functions introduced in the
previous chapter are presented here. The second part of the chapter deals
with an interesting relationship between certain classes of smoothness spaces
and the box dimension of the graphs of affine fractal functions.

In Chapter 7, the basic concepts and notions of wavelet theory are intro-
duced, and it is demonstrated how a certain class of fractal functions gener-
ated by iterated function systems can be used to generate a multiresolution
analysis of L*(IR). This class of fractal functions then provides a new con-
struction of continuous, compactly supported and orthogonal scaling functions
and wavelets.
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The next chapter introduces multivariate fractal functions. The graphs of
these functions are called fractal surfaces. Properties of fractal surfaces are
then discussed and formulae for the box dimension derived.

In order to construct multiresolution analyses based on the fractal surfaces
defined in Chapter 8, the theory of Coxeter groups needs to be employed.
This is done in Chapter 9, after some rudimentary concepts of this theory are
introduced.

Because of the limited scope of this monograph, certain topics could not be
covered. This includes a more in-depth presentation of the geometric theory
of dynamical systems and the role fractals play in this theory. Furthermore,
some of the work of T. Lindstrgm on nonstandard analysis, iterated function
systems, fractals, and especially Brownian motion on fractals is beyond the
limits of this book. The interesting work of J. Harrison dealing with geometric
integration theory and fractals could also not be described. However, refer-
ences pertaining to these as well as other topics are listed in the bibliography.
The bibliography also contains research papers and books not explicitly used
or mentioned in this monograph. They were included to give the reader a
more well-rounded perspective of the subject.

This book grew out of the work of many mathematicians from several areas
of mathematics, and the author has greatly benefited from numerous conver-
sations and discussions with my colleagues. Special thanks go to Doug Hardin
and Jeff Geronimo, who have influenced and shaped some of my thoughts and
ideas. In particular, I am grateful to Doug Hardin for allowing me to use his
Mathematica packages to make some of the figures in this monograph. I also
wish to thank Patrick Van Fleet for introducing me to the theory of Dirichlet
splines and special functions.

Working with Academic Press was a pleasure. I would like to especially
express my gratitude to Christina Wipf, who gave me the idea of writing this
monograph, and to Peter Renz, who guided me through the final stages.

Last but not least, I wish to thank my wife Maritza and my family for
their continuous support and encouragement during the preparation of this
monograph.

Peter R. Massopust
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Chapter 1

Mathematical Preliminaries

This chapter provides most of the mathematical preliminaries necessary
to understand the results in the following chapters. It is a mere collection
of definitions and theorems given without a proof (the only exceptions are
the Banach Fixed-Point Theorem, and the Existence Theorems for free semi-
groups and free groups). The bibliography contains a list of references in
which all these results are motivated and proved. In a sense, this first chapter
compiles notation and terminology and serves as a reference guide for the
remainder of the book.

The relevant material is discussed in three sections: analysis and topology,
probability theory, and algebra. The first section covers such basic topics as
linear spaces, normed and metric spaces, point-set topology, measures, and
the different notions of convergence encountered in analysis. In the second
section, probability measures, distribution functions, random variables, and
their interconnections are considered. Then the Lebesgue spaces are defined,
the Riesz Representation Theorem is stated, and a brief overview of Markov
processes and Markov chains is given. The last section deals with diagrams,
semigroups, groups, and semigroup and group endomorphisms and introduces
free semigroups and free groups. A brief review of category theory and direct
and inverse limits is also provided.

1.1 Analysis and Topology

Throughout this monograph, IN := {1,2,3,...} denotes the set of natural
numbers, Z the ring of integers, and IR the field of real numbers. Let IK be
a subfield of C, the field of complex numbers, and suppose that the mapping

3



4 CHAPTER 1. MATHEMATICAL PRELIMINARIES

a:C = C,z=z+iy — z=xz— 1y maps K into itself (« is called an
involuntary automorphism of C).
Suppose X and Y are linear spaces over IK.
Definition 1.1 1. A mapping ¢ : X — IK is called semilinear or a semi-
linear form iff

(a) Vz,z' € X : p(z+ ') = p(x) + p(z').
(b) Vx € X Vk € IK: p(kz) = kp(z).

If IK C IR all semilinear forms are linear.

2. A mapping ¢ : X x X — IK is called sesquilinear or a sesquilinear form
iff

(a) Vz,2',y € X : p(z+2',y) = p(z,y) + p(2',y).
(b) Vk € K : ¢(kz,y) = ko(z,y).
(c) Vo,y,y' € X & p(z,y +¥') = o(z,y) + (z,¥).
(d) Vk € K : oz, ky) = ko(z,v).

If IK C IR, all sesquilinear forms are bilinear.

3. A sesquilinear form ¢ is called Hermitian iff Vz,y € X : o(z,y) =

p(y,z) (if IK C R a Hermitian form is called symmetric).

4. A sesquilinear form ¢ is called positive definite, respectively positive
semidefinite, iff Vo € X, = # 0, ¢(z,z) > 0, respectively Vo €
X, p(z,z) > 0.

Definition 1.2 An inner product on a linear space X over IK is a positive
definite Hermitian sesquilinear form ¢ : X x X — IK.

The pair (X, ) is called an inner product space. If X is a linear space over
IR, respectively C, (X, ) is called an Euclidean space, respectively unitary
space.

Notation. Instead of writing ¢(z,y), =,y € X, the shorter notation (z,y)
1s sometimes used.

An inner product ¢ on X can be used to define the norm of an element
x € X, and the distance between two elements z,y € X. More precisely, the
norm of x € X is defined as

Izlly = y/e(z, ), (1.1)
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and the distance between z,y € X by

d, = |lz —yll, = \elz —y,z—y). (1.2)

Proposition 1.1 (Cauchy-Schwartz Inequality) Let (X,¢) be an inner
product space over IK. Then, for all z,y € X,

lo(z,y)| < \Jelz,2) /ey, y) = llzll,llyll,, (1.3)

with equality iff there ezists a k € IK such that x = ky. [

Definition 1.3 Suppose that X is a linear space over IK. A non-negative
functional || - || : X — IR is called a norm on X iff the following conditions
hold:

(a) Yz € X [lz]l >0, [jo] =0.
(b) Ve € XVk e K : |kz| = |k|||z]|-
(c) Vo,y € X : |lz+yll < [zl + lyll-
(d) ||z]| =0=x=0.

If only properties (a) — (c) are satisfied, || - || is called a semi-norm on X.
The pair (X, || - ||) is called a normed (linear) space.

Proposition 1.2 Suppose (X, ) is an inner product space over IK. Then
| - lls: X — K as defined in (1.1) is a norm on X. [ ]

Definition 1.4 Suppose M is a set. A mappingd: M x M — IR is called a
metric on M iff the following conditions are satisfied:

(a) Vz,y e M : d(z,y) >0, d(z,z)=0.
(b) Vz,y € M : d(z,y) =d(y,z).

(c) Vz,y,z€ M : d(z,z) < d(z,y) +d(y, 2).
(d) d(z,y) =0=>z=y.

If only properties (a) — (c) hold, then d is called a semi-metric on M.
The pair (X, d), where d is a (semi-)metric on the set X, is called a (semi-)
metric space.
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Proposition 1.3 Suppose || - || is a norm, respectively a semi-norm, on a
linear space X over IK. Then

defines a metric, respectively a semi-metric, on X. [
A norm || - || : X — IR on a linear space X over IK induces in a canonical

way a topology on X, the so-called norm or strong topology. At this point the
definition of topology on a set M is recalled.

Definition 1.5 Let M be an arbitrary set and let 7 be a collection of subsets
of M. Then T is called a topology on M provided

(a) For all 7 in some indexset I, T; € T = U;c; T: € T.
M) Thy,.... T, eT=>N, T, eT.
(c) MeT,0eT.

The elements of 7 are called open sets and the pair (X,7) a topological
space.

The norm topology on X is then defined as follows: Let A C X, and let
B,(a) := {z € X|||z — a|| < r} denote the ball of radius » > 0 centered at
a € X. The set A is called open iff for each a € A there exists a ball B,(a),
r > 0, contained entirely in A. It is easy to show that 7. ;== {A C X| A is
open} is a topology on X.

The topological space (X, 7). ) is also Hausdorff.

Definition 1.6 A topology 7 on a set M is called Hausdorff iff two distinct
points z,y € M can be separated by two disjoint sets U and V in T, i.e.,
Ve,ye M,z #y, 3U,V €T suchthatz €e U, y€ V,and UNV = 0.

Suppose that X is a linear space over IK, and || - |; : X —» IR, i = 1,2,
are arbitrary norms on X. || - ||; and || - ||; are called equivalent, written
| - [lx = | - [l2, iff there exist positive real numbers ¢; and ¢, such that for
all z € X,

lells < i llellay and Jlallz < e ol (15)

Proposition 1.4 1. All norms on IR" are equivalent.
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2. All norms on IR"™ generate the same topology. [

Definition 1.7 Suppose (X,7T) is a topological space. B C 7T is called a
basis of T iff every open set is a union of elements of B:

TeT=T= J B,

Bep’

with B’ C B.

The following result gives necessary conditions for a subset B of 7 to be a
base.

Proposition 1.5 Let (X,7) be a topological space and let B C T. If B is a
base of T, then

(a) X = Uses B;

The concept of topology allows one to precisely define notions such as distance,
convergence, and continuity.

Definition 1.8 Let D be a non-empty set. A relation < on D is called
directed iff it has the following properties:

(a) Reflexivity: Va € D: a < a.
(b) Transitivity: Va,3,y €D : a8, f37v=>a <.
(¢c) Vo,BeD3yeD: a=x7y, 1.

A directed set is a set with a directed ordering.

Remark. Some authors define a directed set as a non-empty partially or-
dered set satisfying condition (c) above.

Let (X, T) be a topological space. A netin X consists of a directed set D
and a mapping 6 : D — X. It is common to write the image of « € D under
0 in X as x4 instead of §(a). Nets are then denoted by {z, }.ep, or simply by
{z,} if it is understood which directed set is meant. Clearly, every sequence
in X is a net in X: take D = IN and <:=<.

Recall that a set N C X is called a neighborhood of x € X iff N is a
superset of an open set containing z.
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Definition 1.9 Let (X,7) be a topological space and let {z,} be a net in
X. A point 2 € X is called a limit point of {z,} iff for any neighborhood N
of x there exists an oy € D such that all z, with oy < « are points in N.

Notation. If z is a limit point of a net {z,}, then one writes for short:
T — x (in T).

The classical characterization of convergence (in the strong topology) is
obtained by choosing X to be a normed linear space, 7 = 7)., and D = IN:

T, = x<=>VYe>03n,Vn >ng: ||z, — 20| <e.

Let (X,7) and (X’,7') be two topological spaces, and F' : X — X' a
mapping of sets. Then F is continuous iff z, — z in (X, T) implies F(z,) —
F(z) in (X', T"), for every net {z,} in X. A mapping F : X — X’ is called

a homeomorphism iff F is bijective and F' and its inverse F'~! are continuous.

Definition 1.10 Let (X, 7T) be a topological space and let IR := IRU {00}
be the completed real line. A function f : X — IR is called upper semi-
continuous, respectively lower semi-continuous, at =, € X iff for all @ € IR
with o > f(xg), respectively a < f(zo), there exists a neighborhood IV of z
in X such that for all x € N one has a > f(z), respectively a < f(x).

A function f is called upper semi-continuous, respectively lower semi-contin-
uous, on X iff it is upper semi-continuous, respectively lower semi-continuous,
at each zy € X.

It is clear that if f is upper semi-continuous then —f is lower semi-
continuous. Also, if a function f is both upper and lower semi-continuous
at 7o € X then f is continuous at z,. The next proposition characterizes
lower semi-continuous functions.

Proposition 1.6 A function f from a topological space (X, T) into the com-
pleted real line R is lower semi-continous iff for all « € R the set

fHa, 00]
1s open in X, or equivalently, the set
f=o00,0]
is closed in X. [

Definition 1.11 Let (X,7) be a topological space and let {z,} be a net
in X. A point z € X is called an accumulation point of {z,} iff for every
neighborhood N of z and any «q there exists an a > «g such that z, € N.



