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Preface

This book covers the material that is usually taken after the first course in calculus:
linear algebra, multivariable calculus, and differential equations. We have tried to
make the book flexible so it is not necessary for the instructor to cover the topics
in the precise order that they appear. Note also that the sections in each chapter
are divided into subsections in order of decreasing importance so that some sec-
tions can be omitted. Some possible course outlines are given below; they are
designed for a one-term introductory course of about forty class meetings of fifty
minutes duration. In each case, a selection of the remaining material will do for
a second term. Some subsections may be omitted at the option of the instructor.

Basic Course:

Ch. 1, §1-5; Ch. 2, §1-4; Ch. 3, §1-4;
Ch. 5, §1; Ch.8, §1-7; Ch.9, §1-5;
Ch. 10, §1,2,4; Ch. 13, §1-3; Ch. 14, §1-3.

Emphasis on Linear Algebra:

Ch. 1, §1-5; Ch.2, §1-4; Ch. 3, §1-5;
Ch. 4, §1-3; Ch.5, §I; Ch.8, §1-7; Ch.9, §l-4;
Ch. 10, §1,2; Ch. 13, §1-3.
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Emphasis on Differential Equations:

Ch. 1, §1-5; Ch.2, §1-4; Ch.8, §1-7; Ch. 10, §1-2;
Ch. 13, §1-3; Ch. 14, §1-3; Ch. 15, §1-3; Ch. 16, §1-3.

Our aim has been to provide standard problem-solving techniques and to show
how the framework of linear algebra displays the various topics to their best
advantage. In particular, it is not necessary to study the formal proofs that we
provide, although these may often be illuminating. The definitions and statements
of theorems are included to show how the subject matter can be organized around
a few central ideas. The examples are really the heart of the book; to complement
them, we have included many routine, computational exercises.

This edition has been improved by many thoughtful suggestions from other
mathematicians. We would like to thank Professor John D. Baum of Oberlin
College, Professor Charles D. Brown of the University of Tennessee at Chattanoo-
ga, and Professor Lisl Gaal of the University of Minnesota. We would particularly
like to mention the contributions of Professor Robert Messer of Vanderbilt Univer-
sity and Professor Ann Stehney of Wellesley College. The problem solutions were
prepared by Gregory Call. Nancy French and Helen Hanchett did most of the

typing.

Hanover, New Hampshire RICHARD E. WILLIAMSON
Princeton, New Jersey HALE F. TROTTER
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One

Vectors

Vectors originated as geometric objects, with magnitude and direction, suitable
for representing physical quantities such as displacements, velocities, and forces. It
turned out later that a variety of topics in pure and applied mathematics could be
unified and simplified by introducing a more general algebraic concept of vector.

This first chapter introduces vectors in algebraic terms, but is chiefly concerned
with their geometric interpretation. The chapter is fundamental for the rest of the
book, because the possibility of visualizing problems geometrically is one of the
major advantages of using vectors.

Section1 / COORDINATE VECTORS

We use the script letter ® to stand for the set of all real numbers, ®? for the set of
ordered pairs (x,, x,), ®* for the set of ordered triples (x,, x,, x;), and in general
®” for the set of n-tuples (x,, x,, . . ., x,) of real numbers. Thus a statement about
®" is a statement about all the sets ®%, ®3, ®*, etc., at once.. ®! means the same
thing as ®}. Boldface letters X, y, z, etc., will stand for n-tuples, whereas ordinary
lightface letters will stand for single real numbers. In particular, we may write
x = (x, y) or x = (x, y, ) for general pairs and triples to save writing subscripts.
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For any real number r and n-tuple x = (x, X, . . . , X,), we define the numer-
ical multiple rx to be the n-tuple

(rxy, rXy, < o 5 X,),

obtained by multiplying each entry x, by r.

Example 1. If we take x = (1, 2) in ®? and r = 3, then
rx = 3(1,2) = (3, 6).
Similarly, with x = (1, 2, —3) in ®® and r = —2,
rx = —2(1,2, —3) = (—2, —4, 6).
For any two n-tuples x = (x,, x5, ..., x,) and y = (¥y, V2, . . ., V) in ®", we
define the sum x + y to be the n-tuple

(xl +y19x2 +y2,~-~,x,,+y,,),
obtained by adding corresponding entries x, and y,.

Example 2. With x = (1, 2) and y = (2, —3) both in ®2,
x+y=(01,2)+@,-3)=G,—-D.
In ®3, with x = (0,2,4) and y = (—1, —2, 2), we have
x+y=(0,2,4)+ (—1,—-2,2) =(—1,0,6).

The two vector operations, numerical multiplication and vector addition, are
natural extensions of the addition and multiplication of single real numbers; one
of their advantages is that they provide a simplified notation for carrying out
several operations at once.

Example 3. Let x = (2, —1,0) and y = (0, —1, —2). Then
2x +y=22,—1,0)+ (0, —1, —2)
=4, —2,0)+ (0, —1, —2) = (4, —3, —2).
Similarly,
3x — 2y =32, —1,0) — 2(0, —1, —2)
=(6,—3,0) 4+ (0,2,4) = (6, —1,4).

We write —x for the numerical multiple (—1)x, and x — y as an abbreviation
for x + (—y). We use 0 to denote an n-tuple consisting entirely of zeros. The zero
notation is ambiguous since, for example, 0 may stand for (0, 0) in one formula
and for (0, 0, 0) in another. The ambiguity seldom causes any confusion since in
most contexts only one interpretation makes sense. For instance, if z = (—2, 0, 3),
then in the formula z 4 0, the 0 must stand for (0, 0, 0) since addition is defined
only between n-tuples with the same number of entries.
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The following formulas hold for arbitrary X, y, and z in ®" and arbitrary
numbers r, s. They state rules for our new operations of addition and numerical
multiplication very closely analogous to the familiar distributive, commutative,
and associative laws for ordinary addition and multiplication of numbers.

rx + sx = (r + s)X.

rx +ry =r(x+Yy).

r(sx) = (rs)x.
X+y=y-+Xx
x+y+z=x+(y+ 2.
.Xx+0=x

. X+ (—x) =0.

D Ilx =x.

®NA LA LN~

These rules are straightforward consequences of the definitions of the vector
operations and of the laws of arithmetic. For illustration, we give a formal proof
of formula 2.

Let x = (x,, X3, ...,X,) and y = (¥, V2, . - - » V), and let r be a real number.
Then
X = (rx;, "Xy, . . .y I'X,) [definition of numerical
multiplication]
ry = (ryy, e, « o« 5 IV,) [definition of numerical
multiplication]
and so
rx +ry = (rx, + ry, rx, s, e, 1X, 1Y) [definition of
addition].
On the other hand,
X+y=0 +YiX+ Varev o Xy + 1) [definition of
addition]
and so
rx+y) =G, + ) rGe + ), oo 1(x, + 1) [definition of
numerical

multiplication].

By the distributive law of ordinary arithmetic, r(x;, + y;) = rx, + ry,, r(x; + »,)
= rx, -+ ry,, etc., and therefore the n-tuples rx + ry and r(x + y) are the same, as
was to be proved.

Any set with opzrations of addition and multiplication by real numbers defined
in such a way that the rules 1 through 8 hold is called a vector space, and its ele-
ments are called vectors. We shall discuss some other vector spaces in Chapter 3,
but for the present “vector” may be taken to mean “element of ®*” for some n.
Numbers are sometimes called scalars when emphasis on the distinction between
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numbers and vectors is wanted. In physics, for example, mass and energy may be
referred to as scalar quantities, in distinction to vector quantities such as velocity
or momentum. The term scalar multiple is synonymous with what we have called
numerical multiple.
The special vectors
e, =(1,0, e =(1) in ®?,
e, =(1,0,0), e, =(0,1,0), e; =(0,0,1) in ®3,

and in general

e, =(1,0,...,0), e, =(0,1,...,0), ..., e,=(0,0,...,1) in ®”
have the property that, if x = (x,, ..., x,) is an arbitrary vector, then
X =x.€ + ...+ X,

Example 4. Given any vector X = (x;, X,) in ®2, we have
(XH xz) = Xl(la 0) + XZ(O’ 1)
= X€; + X,€,;
in particular,
(2, —3) = 2e;, — 3e,.
In ®3 we have
(x4, X3, x3) = x,(1, 0, 0) + x,(0, 1, 0) + x5(0, 0, 1)

= X;€; T X,€, T Xj€j3;

in particular,
(1,2, =7) = e, + 2e, — 7e,.

Notational warning. The notation e, means different things depending on
whether it stands for a vector in ®2, or ®3, or ®” for some other ». In this book it
will always be clear from the context how many entries a vector e, has.

Because every element of ®” can be so simply represented using the vectors e,,

the set of vectors {e,, . . ., e,} is called the natural basis for ®”. The entries in
X =(x;,...,X,)
are then called the coordinates of x relative to the natural basis.
A sum of numerical multiples a,e, + . .. + a,e, is called a linear combination
of the vectors ey, . . . , e,. More generally, a sum of multiples a,x, + ... + a,x, is
called a linear combination of the vectors x,, . . ., X,.

Example 5. The equation
(2,3) = 2e, + 3e,

shows (2, 3) written as a linear combination of e, and e, in ®2. But the vector
(2, 3) can also be written as a linear combination of (1, 1) and (1, —1) as follows:

(2,3) = 3(1, 1) — (1, —1).
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In ®3, the equation

2,3,4 =401,1,1)— 1(1,1,0) — 1(1, 0, 0)
shows the vector (2, 3, 4) represented as a linear combination of the vectors
(1’ 1’ ])’ (15 1, O’)’ and (1’ 0’ O)'

Example 6. To express (1, 2) as a linear combination of (1, 1) and (3, 4) we
must find numbers x and y such that
(1, 3) = x(1, 1) + ¥(3, 4),
or equivalently,
(1,3) = (x + 3y, x + 4y).
Thus we need to solve

x+3y=1

x+4y=3
for x and y. Subtracting the first equation from the second gives y = 2. Then
setting y = 2 in the first equation gives x = —5. Hence

(1,3) = =501, 1) + 23,4

expresses (1, 3) as a linear combination of (1, 1) and (3, 4).

As to why it is useful to consider vectors in ®” for arbitrarily large values of n,
consider the following.

Example 7. A realistic model for the economic growth (or decline) of a country
needs to take into account the production and consumption of thousands of com-
modities. Thus a production vector p in ®" for » = 5000 might represent the
amounts of each commodity produced by a country in a single year, with a cor-
responding consumption vector ¢ representing the consumption of those com-
modities, listed in the same order. The difference vector p — ¢ would represent the
excess of production over consumption for the same period. The number n = 5000
was chosen arbitrarily and is probably too small for any but a very simple economy,
but electronic computers are capable of handling much larger vectors, so it is
evident that while most of our examples will have to do with n = 2 or 3, the
possibility of encountering much larger values of » should be kept open.

EXERCISES

1. Let x = (—3,4) and y = (2, 2). Compute

(a) x +y. (b) x + 2y.

(c) 2x + 3y. (d —x+y—(1,4).
2. Letx = (3, —1,0),y = (0,1, 5), and z = (2, 5, —1). Compute

(a) 3x. (b) y + z.

(c) 4x — 2y + 3z. (d) —y +(1,2,1).
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. Find numbers a and & such that ax + by = (9, —1, 10), where x and y are as in

Exercise 2. Is there more than one solution ?

. Show that no choice of numbers a and b can make ax + by = (3, 0, 0), where x and

y are as in Exercise 2. For what value(s) of ¢ (if any) can the equation ax + by =
(3, 0, ¢) be satisfied ?

. Write out proofs for (a) rule 3 and (b) rule 4 on page 3, giving precise justification for

each step.

. Prove that the representation of a vector x in ®” in terms of the natural basis is

unique. That is, show that if
X1+ ...+ X8, =y1€1 + ...+ Vu€p
then x;, = y, for k =1, ..., n. (Hint. Suppose that x; % y; for some £.)

. Represent the first vector as a linear combination of the remaining vectors, either by

inspection or by solving an appropriate system of equations.
@ 2, -7, 1,1, —-1).

(b) (—2,3); ey, €.

© 2,3,49;1,1,1),,2,1),(—1,1,2).

. Let x = (5, 500, 10) represent the amount of ink, paper, and binding material needed

to produce a single copy of some book and lety = (4, 800, 90) be the same vector for
some other book. Interpret 100x + 50y. What is an interpretation for 100x — 50y ?

. Use rules 1 through 8 on page 3 to simplify the following.

(a) 2(3x — 2y + z) — 4x. (b) $4x +y) —vy.
© x+ (x+ x +y). (d) 2x + 3y + 3x — z.

A small factory produces four different products whose corresponding wholesale
prices in dollars are given by the vector w = (50, 75, 100, 190). The retail price vector
isr = (100, 150, 200, 300). The daily production vector in numbers of each product is
p = (25, 25, 15, 10).

(a) What is the retailer’s profit vector for the four products?

(b) If the wholesale price vector is doubled, what happens to the retailer’s profit
vector ?

(c) What happens to the retailer’s profit vector if the retail prices are each increased
by 10% and the wholesale prices are left unchanged ?

(d) What is the total production vector for the production of a five-day week ?

The temperatures at 50 sites in a building are monitored by a remote computer. Sup-
pose that x,(z) is the temperature at the kth site at time # as measured on a 24-hour
clock. Then the vector x(¢#) = (x;(¢), . . . , xso(#)) represents the temperatures in the
entire building at time ¢. Write an expression in terms of x for the average temperature
vector using the readings at t = 8, 12, 16, and 21.

Express each of the following vectors as a linear combination of e; and e, in ®2, or
of e, e,, and e; in R3.

(@ 2(1,2) — 3(—1,4). (b) (1,4) — (2¢, d).

(C) (1) 0; 1) + 3(29 3! _])- (d) (xs Y Z) + (Z, Ys x)'



