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PREFACE

“Random walks” is a topic situated somewhere in between probability,
potential theory, harmonic analysis, geometry, graph theory, and algebra.
The beauty of the subject stems from this linkage, both in the way of
thinking and in the methods employed, of different fields.

Let me briefly declare what - in my viewpoint - random walks are. These
are time-homogeneous Markov chains whose transition probabilities are in
some way (to be specified more precisely in each case) adapted to a given
structure of the underlying state space. This structure may be geometric
or algebraic; here it will be discrete and infinite. Typically, we shall use lo-
cally finite graphs to view the structure. This also includes groups via their
Cayley graphs. From the probabilistic viewpoint, the question is what im-
pact the particular type of structure has on various aspects of the behaviour
of the random walk, such as transience/recurrence, decay and asymptotic
behaviour of transition probabilities, rate of escape, convergence to a bound-
ary at infinity and harmonic functions. Vice versa, random walks may also
be seen as a nice tool for classifying, or at least describing the structure of
graphs, groups and related objects.

Of course, random walks on finite graphs and groups are a fascinating
topic as well, and have had an enormous renaissance in the last decade:
a book written by two major experts, D. Aldous and J. Fill, is about to
appear.

Some might object that any countable Markov chain may be viewed on a
directed graph, so that our notion of random walks coincides with arbitrary
Markov chains. However, our point of view is reversed: what we have in
mind is to start with a graph, group, etc., and investigate the interplay
between the behaviour of random walks on these objects on one hand and
properties of the underlying structure itself on the other.

Historically, I believe that this spirit of approaching the theory of ran-
dom walks on infinite graphs has its roots in the 1921 paper by Pélya [269],
whose nice title - translated into English - is “On an exercise in probabil-
ity concerning the random walk in the road network”. There, Pélya shows
that simple random walk in the two-dimensional Euclidean grid is recurrent,
while it is transient in higher dimensions. This change of behaviour between
plane and space provided inspiration for much further work. However, it
took 38 years until what I (personal opinion !) consider the next “mile-
stones”. In 1959, Nash-Williams published his paper “Random walks and
electric currents in networks” [245], the first to link recurrence and struc-
tural properties of networks (i.e., reversible Markov chains). This paper -
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Preface ix

not written in the style of the mainstream of mathematics at that time -
remained more or less forgotten until the 80s, when it was rediscovered by
T. Lyons, Doyle and Snell, Gerl, and others. The second 1959 milestone was
Kesten’s “Symmetric random walks on groups” [198], founding the theory of
random walks on (infinite) groups and also opening the door from random
walks to amenability and other topics of harmonic and spectral analysis.

Another direct line of extension of Pélya’s result is to consider sums of
i.i.d. random variables taking their values in Z¢ - this was done to perfection
in Spitzer’s beautiful “Principles of Random walk” [307] (first edition in
1964), which is still the most authoritative and elegant source available.
Spitzer’s book also contains a considerable amount of potential theory. Note
that Markov chains and discrete potential theory were born more or less
simultaneously (while classical potential theory had already been very well
developed before its connection with Brownian motion was revealed, and
one still encounters analysts who deeply mistrust the so-called probabilistic
proofs of results in potential theory - probably they believe that the proofs
themselves hold only almost surely). Although not being directly concerned
with the type of structural considerations that are inherent to random walks,
I consider the third 1959 milestone to be Doob’s “Discrete potential theory
and boundaries” [101]. In the sixties, potential and boundary theory of
denumerable Markov chains had a strong impetus promoted by Doob, Hunt,
Kemeny, Snell, Knapp and others, before being somewhat “buried” under
the burden of abstract potential theory. Doob’s article immediately led
to considerations in the same spirit that we have in mind here, the next
milestone being the note of 1961 by Dynkin and Malyutov [111]. This
contains the first structural description of the Martin boundary of a class
of random walks and is also - together with Kesten [198] - the first paper
where one finds the principal ingredients for computations regarding nearest
neighbour random walks on free groups and homogeneous trees. Indeed, it
is amusing to see how many people have been redoing these computations
for trees in the belief of being the first to do so.

It was in a paper on boundaries that Kesten [201] indicated a problem
which then became known as “Kesten’s conjecture”: classify those (finitely
generated) groups which carry a recurrent random walk, the conjecture (not
stated explicitly by Kesten) being that such a group must grow polynomially
with degree at most two. It is noteworthy that the analogous problem
was first settled in the 70s for connected Lie groups, see Baldi [17]. The
Lie case is not easier, but there were more analytical and structural tools
available at the time. The solution in the discrete case became possible by
Gromov’s celebrated classification of groups with polynomial growth [149]
and was carried out in a remarkable series of papers by Varopoulos, who
gave the final answer in [325]. In the 80s, random walks on graphs have been
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repopularized, owing much to the beautiful little book by Doyle and Snell
[103]. However, this discussion of selected “milestones” is bringing me too
close to the present, with many of the actors still on stage and the future to
judge. Other important work from the late 50s and the 60s should also be
mentioned here, such as that of Choquet and Deny [74] and - in particular
- Furstenberg [124].

Let me return from this “historical” excursion. This book grew out of a
long survey paper that I published in 1994 [348]. It is organized in a similar
way, although here, less material is covered in more detail.

Each of the four chapters is built around one specific type of question
concerning the behaviour of random walks, and answers to this question
are then presented for various different structures, such as integer lattices,
trees, free groups, plane tilings, Gromov-hyperbolic graphs, and so on. At
the beginning, I briefly considered using the “orthogonal” approach, namely
to order by types of structures, for example, saying first “everything” about
random walks on integer lattices, then nilpotent groups and graphs with
polynomial growth, trees, hyperbolic graphs, and so on. Some thought
convinced me that this was not feasible. Thus, the same classes of structures
will be encountered several times in this book. For example, the reader who
is interested in results concerning random walks and trees will find these in
paragraphs/sections 1.D, 5, 6.B, 10.C, 12.C, 19, 21.A and 26.A, tilings and
circle packings are considered in 6.C-D, 10.C and 23, and the integer grids
and their generalizations appear in 1.A, 6.A, 8.B, 13 and 25. Regarding
the latter, I obviously did not aim at an exposition as complete as that of
Spitzer had been in its time. Most likely, every reader will find a favorite
among the topics in random walk theory that are not covered here (such
as random walks on direct limits of finite groups, ratio limit theorems, or
random walks in random environment).

A short word on notation. Instead of using further exotic alphabets,
I decided not to reserve a different symbol for each different object. For
example, the symbol ® has different meanings in Sections 6, 9 and 12, and
this should be clear from the context.

I started writing this book at the beginning of 1995 (one chapter per
year). Thus, Chapter I is the oldest one among the material presented here,
and so on. I decided not to make a complete updating of this material to
the state of the art of today (1999) - otherwise I could never stop writing.
In particular, the 90s saw the emergence of a new, very strong group of
random walkers (and beyond) in Israel and the US (I. Benjamini, R. Lyons,
Y. Peres, O. Schramm, ...) whose work is somewhat underrepresented here
by this reason. On the other hand (serving as an excuse for me), two of them
(Lyons and Peres) are currently writing their own book on “Probability on
Trees and Networks” that can be expected to be quite exciting.
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Many mathematical monographs of today start with two claims. One
is to be self-contained. This book is not self-contained by the nature of
its topic. The other claim is to be usable for graduate students. It has
been my experience that usually, this must be taken with caution and is
mostly true only in the presence of a guiding hand that is acquainted with
the topic. I think that this is true here as well. Proofs are sometimes a
bit condensed, and it may be that even readers above the student level will
need pen and paper when they want to work through them seriously - in
particular because of the variety of different methods and techniques that I
have tried to unite in this text. This does not mean that parts of this book
could not be used for graduate or even undergraduate courses. Indeed, I
have taught parts of this material on several occasions, and at various levels.

Anyone who has written a book will have experienced the mysterious fact
that a text of finite length may contain an infinity of misprints and mistakes,
which apparently were not there during your careful proof-reading. In this
sense, I beg excuse for all those flaws whose mysterious future appearance
is certain.

In conclusion, let me say that I have learned a lot in working on this
book, and also had fun, and I hope that this fun will “infect” some of the
readers too.

Milano, July 1999 W.W.



ERRATA

The preparation of the paperback edition gave me the opportunity to
prepare these 3 pages containing the corrections of a few misprints (many
more will have remained) and two “true” mistakes, as well as a missing
reference. Graz (Austria), September 2007, Wolfgang Woess

Page 4, lines 13-14 from top. If n — oo then g,/n — 1/m [in the
proof of Lemma. 1.9]

Page 63, line 7 from bottom. Reference to (6.10) [instead of (6.9)].

Page 82, lines 12-15 from top. In (2), (3) and (4): p(P) < 1
[instead of p(P) > 1].

Page 167, line 4 from bottom. forallr,n € N [instead of m,n € N].

Page 170, proof of Theorem 15.15. The mistake is that the measure
p on line 7 is not symmetric. The proof should start as follows.

Let po and vp be the equidistributions on {0,+e; : i = 1,...,d} c 24
and on 2, respectively. Via the embedding of Z¢ and 2 into Z4 2, both
are also considered as measures on the wreath product. For the proof, in
view of Corollary 15.5, it is sufficient to consider the random walk on Z%
whose law is u = vg * pg * 9 that is,

_ [ po@)/1A?, ifn€{n.+Tym:a,beA},
u(y,n) = 0 )
, otherwise.

Since vp * 19 = vp, we have u(™ = (1o * po)™ * 1y. Consider i.i.d. random
variables (Kpn,V,), where K, € Z% has distribution pg and the B-valued
random variables V,, are all equidistributed on the set of configurations
n € B with suppn C {0}, and K, and V, are independent. Then u(™ is
the distribution of

n+1
Sn’ZTSj_l‘/j GZdIQ[,
j=1

where S, = K; + -+ + K, is the random walk on Z? with law pg, with
So =0.

The proof of the lower bound is then precisely as on page 170, taking
into account that on line 10 from bottom, the middle term of the inequality
has to be Po[max{|S;|: j < n} <r]?/|A,| [the square was missing].
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xiii Errata

For the upper bound, the summation over j on page 171, lines 2—4 from
top, should go up to n + 1 instead of n, so that line 4 becomes

= Eo(|g(|—anl | Sn =0)Po[S, = 0] = Eo(|21|—lD,.l 1(s,=0)) »
after which the proof concludes as before.

Page 185, line 6 from bottom. The last term of the sum is
<o+ C(z|r)\/T — ;:/&5 [coefficient C(x|r) instead of C(z|r/&,)).

Page 215, line 5 from top. p™(z,y) ~ 4 (1 + Z‘_i' id(z,y))
[asymptotic equivalence instead of equality].

Page 294-295, Proof of Theorem 27.1. As pointed out by the late
Martine Babillot, there is a mistake in the proof on page 295, lines 8-9: it
does not follow from the preceding arguments that = cl,._x (h1—cn—1-ho) €
C¢. We explain how the proof can be repaired by re-ordering the material.

The initial piece remains the same until the displayed formula on page
194, lines 4-3 from bottom, which contains some misprints. The material
starting with this formula and ending on page 295, line 11 should be replaced
by the following:

K(z,yn) — F(z,yn)F (o, Yn)
K(z,y;)  F(o,yn)F(z,v})
% F(z,v)F(v,yn) F(o,v)F(v,y.,) __ 1
~ C(26)F(o,v)F(v,yn) C(20)F (z,v)F (v, yh)  C(20)2°

Having proved (27.15), we now let L¢ be the set of all limit points in
the Martin boundary M(P) of sequences in X which converge to £ in the
hyperbolic topology. Bounded range implies that K (-,a) € HH(P) for
every a € L. By (27.15), K(-,a) > e, K(-,p) for all o, 8 € L.

We next show in Step 2 that there is o € L¢ such that K( -, ) is minimal
harmonic. Then the last inequality will imply that K (+,8) = K(-,a) for
all B € L¢, that is, L¢ consists of the single point a. The latter is then the
natural image of £, completing Step 1.

Step 2. Let m(o,&) be a geodesic from o to £. There must be a sequence
(zn) of points on m(0,£) such that |z,yq| > |zn| and z, — a € L¢ in the
Martin topology. We define H, = {h € H* : sup, h(z)/K(z,a) = 1}. If
we can show that Ho = {K(-,)} then minimality of K-, a) follows.

Setting € = 1/C(0), Theorem 27.12 yields K (zx, Tn) > €/F (o, k) when-
ever 0 < k < n. Therefore

F(z,zx)K(zx,0) > e K(z,2x) forallz € X.



Errata xiv

If h € Ht is arbitrary then — using Lemma 27.5 — for all =

(27.16) h(z) > F(z,zx) h(zx) > € K(z, k) K’z(kax)

Now let h € H,, and apply (27.16) to h' = K(-,a) — h. Then

' (zx)

(zx,0)

As infx (h'/K(-€)) = 0, we must have limy (h(zx)/K(zk,@)) = 1. We
use this fact, and apply (27.16) to our h € H,. Letting £k — oo, we infer
h > e K(-,0). This holds for every h € H, .

Set cn = e(1+ (1 —€)+---+ (1 —¢)"). We show inductively that
h>c,K(-a)for all n > 0 This is true for n = 0. Suppose it holds for
n—1. Then the function —- (h cn—1 K(,a)) is also an element of H,
and > ¢ K(-,a). This yields h 2 (en-1+e(l—ca1))K(- @) =cn K(+, ).
Letting n — oo, we get h > K(-,c). Therefore h = K(-,a) for every
h € H,. This concludes the proof of minimality of K(-,a), and completes
Step 2 and thus also Step 1.

At this point follows — without any change — the old Step 2, which now
becomes Step 3, after which the proof is complete. (The old Step 3 has been
modified and incorporated what is now Step 2 above.)

h(z) > e K(z,a) l1msup 7

Missing reference. It is unforgivable that in the Preface there is no
reference to the following book.
Guivarc’h, Y., Keane, M., and Roynette, B.: Marches Aléatoires sur les
Groupes de Lie, Lect. Notes in Math. 624, Springer, Berlin, 1977.
Indeed, while I did not use any specific material from that volume in the
present monograph, it documents an important phase in the development
of the theory of random walks on groups — not discrete ones, but Lie groups.
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CHAPTER 1

THE TYPE PROBLEM

1. Basic facts

Before embarking on a review of the basic material concerning Markov
chains, graphs, groups, etc., let us warm up by considering the classical
example.

A. Pdélya’s walk

The d-dimensional grid, denoted briefly by Z¢, is the graph whose vertices
are integer points in d dimensions, and where two points are linked by an
edge if they are at distance 1. A walker wanders randomly from point to
point; at each “crossroad” (point) he chooses with equal probability the one
among the 2d neighbouring points where his next step will take him, see
Figure 1. Starting from the origin, what is the probability p(27) (0,0) that
the walker will be back at the 2nth step? This is the number of closed paths
of length 2n starting at the origin, divided by (2d)?". (The walker cannot
be back after an odd number of steps.) For small dimensions, the solutions
of this combinatorial exercise are as follows.

Figure 1: the grids Z and Z2

1 1
2 2
-— —

d = 1. Among the 2n steps, the walker has to make n to the left and n
to the right. Hence

1 /2n »
(L1) P (0,0) = 27(7;) ~ G

d = 2. Let two walkers perform the one-dimensional random walk simul-
taneously and independently. Their joint trajectory, viewed in Z2, visits
only the set of points (3,5) with i + j even. However, the graph with this
set of vertices, and with two points neighbours if they differ by +1 in each

1



2 I. The type problem

component, is isomorphic with the grid Z2 and probabilities are preserved
under this isomorphism. Hence

(1.2) 2 (0,0) = (22% (2")>2 ven Bl

n

d = 3. It is no longer possible to represent the random walk in terms of
three independent random walks on Z. In a path of length 2n starting and
ending at the origin, n steps have to go north, east, or up. There are (2:)
possibilities to assign the n steps of these three types; the other n go south,
west, or down. For each of these choices, i steps go north and ¢ go south, j

steps go east and j go west, n — i — j steps go up and n — ¢ — j go down.

Hence )
1 /2n n!
(2n) 0,0) = _( ) <_______.> .
p7(0,0) 627 \ n H;n il (n — i — j)!

Consider the function (z,y, z) — z!y!2! for z,y,2 > 0. Under the condition
Z + Yy + z = n, it assumes its minimum for £ = y = z = n/3, when n is
sufficiently large. Hence

. 1 /2 ! !
0 500 < (V) erm 2 (wmt)

1 (2n n! - —3/2
‘62"(n)<n/3)!33 G

Indeed, for arbitrary dimension d, there are various ways to show that
(1.4) p(0,0) ~ Cyn~42.

Now for the random walk starting at the origin, ) p(?7)(0,0) is the
expected number of visits of the walker back to the origin: this is infinite
for d = 1,2 and finite for d > 3. This drastic change of behaviour from two
to three dimensions stands at the origin of our investigations.

B. Irreducible Markov chains

A Markov chain is (in principle) given by a finite or countable state
space X and a stochastic transition matriz (or transition operator) P =
(p(z, y))we x- In addition, one has to specify the starting point (or a
starting distribution on X). The matrix element p(z,y) is the probability
of moving from z to y in one step. Thus, we have a sequence of X-valued
random variables Z,, n > 0, with Z, representing the random position in
X at time n. To model Z,, the usual choice of probability space is the
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trajectory space @ = XNo, equipped with the product o-algebra arising
from the discrete one on X. Then Z, is the nth projection @ — X. This
describes the Markov chain starting at z, when Q is equipped with the
probability measure given via the Kolmogorov extension theorem by

P20 = 20,21 = 21, ..., Zn = Tp] = 62(0)p(T0, Z1) - - P(Tn—1,Z1) .
The associated expectation is denoted by E,. Alternatively, we shall call

a Markov chain (random walk) the pair (X, P) or the sequence of random
variables (Z,)n>0. We write

p(n)(x, y) =P;[Z, = y] .
This is the (z,y)-entry of the matrix power P™, with P° = I, the identity
matrix over X. Throughout this book, we shall always require that all states
communicate:

(1.5) Basic assumption. (X, P) is irreducible, that is, for everyz,y € X
there is some n € N such that p(™ (z,y) > 0.

Next, we define the Green function as the power series

(1.6) G(z,ylz) =Y p™(z,¥)2", z,yeX,zeC.

n=0

(1.7) Lemma. For real z > 0, the series G(z,y|z) either diverge or con-
verge simultaneously for all z,y € X.

Proof. Given z,,y1,%2,y2 € X, by irreducibility there are k, £ € N such
that p®)(z1,22) > 0 and p® (yz,,) > 0. We have

PO (21, 11) > p® (21, 22)p™ (22, 42)p @ (y2, 11)
and hence, for z > 0,

G(z1,v112) > p®) (21, 22)p (32, 41) 254G (22, 2 l2) . 0

As a consequence, all the G(z,y|z) (where z,y € X) have the same
radius of convergence r(P) = 1/p(P), given by

(1.8) p(P) = limsupp™ (z,y)'/" € (0, 1].

This number is often called the spectral radius of P.

The period of P is the number d = d(P) = ged {n > 1: p((z, ) > 0}.
It is well known and easy to check that it is independent of x by irreducibil-
ity. If d(P) = 1 then the chain is called aperiodic. Choose 0 € X and
define Y; = {z € X : p("d+i)(o, ) > 0 for some n > 0},7=0,...,d-1.
This defines a partition of X, and z,y are in the same class if and only
if p¥(z,y) > 0 for some n. These are the periodicity classes of (X, P),
visited by the chain (Z,),>0 in cyclical order. The restriction of P4 to each
class is irreducible and aperiodic. See e.g. Chung [75] for these facts.



