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Preface

The articles in this collection mainly grew out of the talks given at a Conference
held at UCLA in January 2008, which honored V. S. Varadarajan on his 70th
birthday. The main theme of the Conference was symmetry in mathematics and
physics. More precisely, the talks at the conference were dedicated to the interplay
between geometry, group theory, and fundamental physics. In addition to the
speakers there were a number of doctoral and post doctoral fellows including several
students of Varadarajan who had worked under him on these topics throughout his
career.

Varadarajan’s work over the past 50 years represents a broad spectrum of math-
ematics but its main emphasis has been on symmetry in mathematics and math-
ematical physics, broadly interpreted. Some of his significant achievements are:
development of the infinitesimal method in the theory of infinite dimensional repre-
sentations of real semi simple Lie algebras; Fourier transform theory in the complex
domain on Riemannian symmetric spaces; theory of local moduli for ordinary mero-
morphic linear differential equations at an irregular singularity; theory of unitary
representations of super Lie groups and the classification of super particles; and
more recently, studies on the physics associated to non-archimedean space-time.

The relevance of the representation theory of Lie groups and Lie algebras to
the physics of elementary particles and fields has been known for a very long time,
going back to the famous 1939 paper of E. P. Wigner on the representations of the
Poincare group. Since then this link between representation theory and physics has
deepened enormously, and includes quantum field theory and conformal field theory.
Then something marvelous happened. In the 1970’s the physicists created a new
extension of geometry where the underlying manifolds acquired anti-commuting co-
ordinates in addition to the usual commuting ones, reflecting the Fermionic struc-
ture of matter. This introduced supergeometry and super Lie groups into the mix
and made the connection between geometry and physics much richer. Together
with his students, he has made many important contributions to this area.

It thus seemed appropriate to have a conference at UCLA devoted to some
of these themes. The Conference turned out to be very exciting and stimulating
because of the contributions of the participants who came from the United States
and abroad. Most of the articles in this volume are thus naturally concerned with
the above-mentioned themes: representations of finite and infinite dimensional Lie
groups and Lie algebras, super Lie groups and supergeometry, which are at the
interface of mathematics and fundamental particle physics, and supersymmetry.
The discussions on supergeometry and supersymmetry are especially relevant at
this time since some of the experiments at the Large Hadron Collider at CERN
may help determine whether supersymmetry is a feature of the world of elementary
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particles. A few of the articles are in probability and the foundations of quantum
mechanics, areas in which Varadarajan worked early in his career.

The scientific organizing committee consisted of S. R. S. Varadhan (Chair), E.
Beltrametti, T. J. Enright, S. Ferrara, K. R. Parthasarathy, and N. R. Wallach.
The conference was funded by a generous grant from NSF, from a grant from the
Goldman-Sachs corporation, and a matching contribution from a private donor. We
are very grateful to these sources for their generosity, which made the conference
go on in a very smooth manner.

The editors wish to express their thanks to many people whose efforts made this
conference a success, including all the participants. They wish to thank IPAM for
permission to use their facilities for the conference; Professors Christoph Thiele and
Robert Steinberg for inaugurating the conference; the department of mathematics
at UCLA for providing help at all stages of the conference and for organizing the
web site, especially Babette Dalton, Robert Amodeo, and Natasja Saint-Satyr;
and Christine Thivierge of the AMS for her editorial assistance in producing this
collection. The editors are also grateful to T. Kibble and Imperial College Press
for permission to reprint B. Zumino’s paper “Supersymmetry: A Personal View”,
which appears by their courtesy in these pages.

Donald Babbitt, UCLA
Vyjayanthi Chari, UC Riverside
Rita Fioresi, Universita di Bologna, Italy
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The Role of Weak Convergence in Probability Theory

S.R.S.Varadhan

1. Introduction

The concept of limit theorems in probability goes way back. The first limit
theorem, the weak law of large numbers was proved by Jacob Bernoulli [1] in the
early eighteenth century. This was quickly followed by De Moivre [3] who proved the
central limit theorem establishing the approximation of the binomial distribution
by a normal distribution. Further work by, Laplace, Gauss, Levy, Khintichine,
Kolmogorov, Gnedenko and others put limit theorems at the center of probability
theory [11].

The connection between random walks and Brownian motion was understood
by Levy and others along with the idea that distributions of quantities like the
maximum etc, based on random walks, converges to the corresponding distributions
derived from Brownian motion. Doob [6] formulated this more precisely in his
paper on ‘Heuristic approach to the Kolmogorov-Smirnov Theorems’. Donsker (5],
in his thesis, established the first general theorem to the effect that Doob’s heuristic
proof can in fact be justified. However his approach was too dependent on finite
dimensional approximations.

At this point the study of stochastic processes as probability distributions on
function spaces began. Contributions were made by LeCam [13] in the United
States, Kolmogorov [12], Prohorov [15], Skorohod [17] and others in USSR, as well
as Varadarajan [20] in India. Alexandrov in the 1940’s had studied set functions
on topological spaces and now powerful techniques from functional analysis could
be used to study stochastic processes as measures on function spaces. A random
walk or any stochastic process induces a probability distribution on the space of
paths. By interpolation or some such simple device both the approximating and
the limiting distributions can be put on the same space of paths. The question
then reduces to the investigation of the convergence of a sequence [, of probability
measures on a space X of paths to a limit u. It is clear that the measures B
in the case of random walks, look qualitatively different from Brownian paths and
hence u, L p. Tt is not going to be true that p, (A) — p(A) for all measurable sets
AeX.

Functional analysis now provides a useful window. The space X of paths comes
with a topology. A probability measure y defines a normalized non-negative linear

©2009 American Mathematical Society



4 S. R. S. VARADHAN

functional
A(f) = / £ (@) u(de)

on B = C(X) and they form a convex subset M in the dual B* of B. The natural
weak* topolgy on this subset is called ‘weak convergence’ by probabilists, and has
proved to be a very useful tool. The following questions arise naturally and were
investigated.

1. Which linear functionals A(f) have the above representation as A, for some
probability measure p, i.e. when does A € M and when is p uniquely determined
by A?

2. What can one say about the space M as a topological space?

3. Is it metrizable? What are its compact subsets?

Viewed in this manner the classical limit theorems tell us that if we place ran-
dom walks as well as Brownian Motion on the same space X = C0, T] of continuous
paths, then the only possible limit for the measures u,, coming from random walks
is the Wiener measure . Weak convergence as elements in C'(X)* would provide
justification for the convergence of distributions of continuous functionals on X
under p, to the corresponding distribution under u. The issue then is that of
compactness.

Prohorov, Skorohod and others in the Russian school worked mostly under the
assumption that X is a complete separable metric space. They obtained character-
izations of compact subsets of M, and provided useful general sufficient conditions
to verify compactness in several useful function spaces. Varadarajan had indepen-
dently worked out similar results, in a more general context, in his thesis during
1956-57 at the Indisn Statistical Institute. These tools were used by Parthasarathy,
Ranga Rao and Varadhan [14] , [21] to study limit theorems in different contexts.

2. The Martingale Problem.

The work of Stroock and Varadhan [18], [19] on the Martingale approach to
the study of Markov process is also motivated by these considerations. In approxi-
mating diffusion processes by Markov chains we start with an approximation that
is valid at the infinitesimal level. If A > 0 is the discretized time unit and 7 (, dy)
is the single step transition probability, it is natural to assume that

/ [F() — F(@)]mn(z, dy) = h(LF)(z) + ofh)

where L is the generator of the semigroup associated with the limiting process. Our
aim is to show vn(z) = [ f(y)n7(z,dy) ~ (e""*Lf)(x). The standard analytical
method is to to solve the evolution equation

uy = Lu, u(0,z) = f(x)
and estimate the difference A, (z) = v,(z) — u(nh,z). Let nh = t.

/u(k h, y)mr(x, dy) ~ u(k h,z) + h(Lu(k h, ))(x) + o(h)
= u(kh,x) + huy(k h,z)(x) + o(h)
=u((k+1)h,z) + o(h)
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Hence
|u(nh, z) — /u(O,y)ﬂ',’j(m,dy)' <no(h) =o0(1)

and the proof depends on the regularity of the solution u(t,z). The actual random
paths of the Markov chain did not play any role. Only the iterates of mj, were
needed.

The martingale method, on the other hand, starts with the measures P,,ona
function space of paths, that corresponds to the given Markov chain starting from
z and shows that sequence has a limit P,. Then if nh = ¢,

vn(2) = B [f(2(t)] — EP[f(2(t)] = u(t, z)

To achieve this one needs to verify compactness and then characterize the possible
limit uniquely. It is done as the unique measure on C[0,T] (or D[0,T] which is a
space of paths that admits simple jumps), with certain properties:

Plz(0)=z] =1
and
t
0
is a martingale with respect to (2, %y, P) for a wide class of functions f. From the
definition of a Markov chain, if Py is the probability distribution of the chain and
Pyle(0)=x] =1

f(@(t)) - F((0) - / (Lf)(@(s))ds = Z;(2)

then
f(z(nh)) — f(z(0)) — i /[f(y) = f(@( h))mw(z(5 h), dy) = Z}
§j=0

is a martingale. One now uses ideas from weak convergence to show that {Pn} is
compact and that any limit satisfies the properties.

3. Large Deviations

In limit theorems one is primarily interested in the behavior of P,(A) asn —
00. We look at the larger problem of weak convergence of P, and establish such
convergence to the limit P, in a some topological space X that contains A as a
subset. If A is a continuity set for P, i.e P[§A] = 0, then P,(A) — P(A).

In large deviations, we are dealing with a situation where P, tends to a distri-
bution that is degenerate at some point, i.e. P, — 0z, for some zg € X. Then if
z ¢ A, P,(A) — 0 and we wish to know how fast. In particular we expect the rate
to be exponential and we wish to examine

1
lim —log P,(A) = —c(A)

n—oo N
It will turn out that

c(A) = ;relg I(x)

for some non-negative function I(z) with I(zo) = 0.
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In the theory of weak convergence it is established that in metric spaces weak
convergence is equivalent to

limsup P, (C) < P(C) for closed sets C

n—oo
liminf P,,(G) > P(G) for open sets G
n— o0
and for continuity sets i.e sets with P(A°) = P(A), one has
lim P,(A) = P(A)
An important criterion for compactness of { P, }, is the uniform tightness condition:
given € > 0, there is a compact set K, such that
inf P,(Kc) >1—¢

In large deviation theory a sequence P, is said to satisfy the large deviation principle
with the rate function I(z) if

1
(3.1) limsup — log P,(C) < — inf I(x) for closed sets C
n—oo N zeC
1
(3.2) lim inf - log P,,(G) > — sup I(x) for open sets G

I(z) : X — [0,00] is a lower semi continuous function. There is a similar tightness
condition.

1. I(x) has compact level sets, i.e Cp = {x : I(z) < £} is compact for each ¢ < .
2. For any ¢ there is a compact set K, such that
sup Py (K§) < e

Just as weak convergence implies

lim P,(A) = P(A)

n—oo

for continuity sets, in large deviation theory it follows easily from (3.1) and (3.2)
that for sets A such that

inf I(x) = inf I(z) = inf I
Jof, ) = Juf 1) = 1 T

we will have
1
lim —log P,(A) = —c(A) = — inf I(z)

n—oo N z€EA

In weak convergence we will have
lim | f(z)dP, = /f(w)dP

for bounded continuous functons f. In large deviation theory for such functions
the analogous result is

n—oco N

lim L log/e"f(“”)dPn = sup[f(z) — I(z)]
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In weak convergence when f, — f, in order to make sure that [ f,(z)dP, —
J f(z)dP when P, converges weakly to P, one assumes the uniform convergence of
fr to f on compact sets. This is used together with tightness to control
limsup limsup P,[|fx — f| > €] =0
k—o0 n— o0
for every € > 0. In large deviation theory super exponential estimates play a similar
role. For every € > 0,
(3.3) lim sup lim sup — ! logP (lfs = fl > € =—00
k—oo n—oo
The methods used in large deviation theory are often similar to the ones used in
studying weak convergence of probability measures. There are several sources [22],
[4], [2] that describe these. Let us look at an example.

Schilder’s theorem [16]. P, is the distribution of z(t) = ﬁﬂ(t), where ( is the

standard Brownian motion. There is a large deviation principle on C|0, 1] with rate
function

1
10 =5 | rora
0
on functions f with f(0) = 0 that have a square integrable derivative. Otherwise
I(f) = oo.

The proof proceeds by approximation. If z(-) is the piecewise linear approxi-
mation with intervals %

Pullox() — 2()] 2 € < Cneapl-"ES

].

This provides the estimate (3.3) and enables us to interchange the limits on k and
n. In a recent book [7] Ellis and Dupuis emphasize the weak convergence aspect
of large deviations. If one wants to prove a large deviation upper bound for P,
with rate function I(z), it suffices to show that when ever Q,, << P, and Qn — 0z
weakly, then

liminf — H(Qn|P) I(z).

n—oo
Here H(Q|P) is the relative entropy f 75 log dQ dpP.
4. Scaling Limits

In studying scaling limits of large systems of interacting processes ideas from
weak convergence play a crucial role. For simplicity consider as in [8], a family
{zi(t)} of processes indexed by points i = 1,2,..., N arranged (periodically) on
the unit circle that satisfy the stochastic differential equation

dzi(t) = [¢(zi-1(t)) — 28(2i(t)) + ¢(wir1(t))]dt + [dB; i41(t) — dBi—1.4(2))].
Assume initially that

1
N g 6.1 2:(0) = pun(0) — uo(x)de
in probability. Then show that

1
N Zdﬁ-xi(NQt) = un(N?t) — u(t, z)dx
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where u(t, ) satisfies a certain partial differential equation with u(0,z) = g
Let Py be the distribution of the process puy(N?-) on the space C[[0, T]; M(S
Then,

1. Py is tight.

ik

2. If P is any limit then P is supported on paths u(t), that satisfy
(i) they have a density for every ¢, i.e u(t,dz) = u(t,z)dx
(ii) if ¢' = ¢ then with

h(z) = sup[fz — log/eey—¢(9)dy]

u(t, z) is a weak solution of

ut = [h(u(t, ©))]zx

/ / Ul ) Pdedt < o0
St Jo
(iil) u(0,z) = up(x)

3. The solution satisfying (i), (ii) and (iii) is unique.

that satisfies

The measure P therefore has to be the §-measure at this unique solution.

5. Large Deviations for the Simple Exclusion Process.

The totally asymmetric simple exclusion model (TASEP) is a Markov process
of interacting particles [10]. These particles live on Z and are restricted to at most
one particle per site. The current state then is a map n : Z — {0,1}. If there is
a particle at site  then n(z) = 1, otherwise it is n(z) = 0. The generator of the
process is given by

(Lf)(m) = Zn +D)f(™*F) — f(n)]

which means that particles wait for a random exponential time at the end of which
they try to jump to the next site on its right. They jump if the site is free. If
not they wait again for the next opportunity. If the density of particles is not too
hlgh then they march to the right, in a haphazard fashion. We rescale space by
N and speed up time by a factor of N. The density profile p(t, z) that provides a
macroscopic view, at time N¢ is defined by

% S TNt ) - / Tzl a)dn

Given p(0,7) = po(z) at time ¢t = 0, for t > 0, p(t, z) is determined as the weak
solution of

pr+ [p(1 = p)ls =
with initial condition p(0, z) = po(z). However the weak solution is not unique and
an ‘entropy condition’ has to be imposed in order to make the solution unique. If ¢
is a convex function and h is determined by h/(r) = ¢'(r)(1 — 2r), then for smooth

solutions we will have
[9(p)]e + [h(p)] =



