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PREFACE

This text brings to the frontiers of much current research in topologi-
cal rings a reader having an acquaintance with some very basic point-set
topology and algebra, which is normally presented in semester courses at
the beginning graduate level or even at the advanced undergraduate level.
Many results not in the text and many illustrations by example of theo-
rems in the text are included among the exercises, sufficient hints for the
solution of which with references to the pertinent literature are offered so
that solving them does not become a major research effort for the reader.
Within mentioned constraints, a bibliography intended to be complete is
given. Expectations of a reader include some familiarity with Hausdorff,
metric, compact and locally compact spaces and basic properties of contin-
uous functions, also with groups, rings, fields, vector spaces and modules,
and with Zorn’s Lemma.

In view of the readers for whom the book is written, the exposition is
more detailed than would be necessary for readers who are mature mathe-
maticians. In addition, quite a bit of algebra, both commutative and non-
commutative, is included, since many of those readers will need additional
background in algebra to understand parts of the text. Obviously, there
is considerable overlap with my earlier text, Topological Fields, in this se-
ries (North-Holland Mathematics Studies 157, Notas de Matématica (126)),
since both require a common core of knowledge, but in some instances the
presentation here of such material (e.g., the completion of a commutative
Hausdorff group) is quite different from that in Topological Fields. 1 deeply
regret the omission of all applications of categorical concepts to topologi-
cal rings. To have included the requisite background for those for whom
the book is written would have greatly lengthened an already long book
and overbalanced any introduction to the use of categorical concepts in the
theory of topological rings that could reasonably be presented.

This seems a natural place to record significant errors thus far discovered
in Topological Fields, and an Errata correcting such errors is included.

The book is typeset by ApMS-TEX, with the exception of the indices,
which are typeset by Latex. I am deeply grateful to Dr. Yun-Liang Yu, sys-

vii
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tems programmer of the Duke Mathematics Department, who has patiently
guided me through the intricacies of AA(S-TEX and Duke’s computer sys-
tem. When I began the task of typesetting this volume, I remarked to Dr.
Yu, a recent arrival from China, that I felt like “an immigrant who has just
gotten off the boat and doesn’t know a word of English.” Thanks to him, I
now have a rudimentary grasp of the language.

Seth Warner

Mathematics Department, Duke University
Durham, North Carolina

15 March 1993
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CHAPTER 1

TOPOLOGICAL RINGS AND MODULES

In this introductory chapter we shall define and give examples of topo-
logical rings, modules, and groups, show how they may be introduced by
specifying the neighborhoods of zero, and present a few basic constructions.

1 Examples of Topological Rings

By a ring is meant an associative ring, not necessarily one having a mul-
tiplicative identity. A ring with identity is a ring possessing a multiplicative
identity 1 such that 1 # 0. Thus a zero ring, one having only one element,
is not a ring with identity. A ring A is trivial if zy = 0 for all =, y € A.
Any commutative group is thus the additive group of a trivial ring. A zero
ring is a particularly trivial ring.

We shall denote by N, Z, Q, R, C, and H the set of natural numbers
(including zero), integers, rationals, real numbers, complex numbers, and
quaterions respectively. The set of real numbers greater than zero is denoted
by R0, and those greater than or equal to zero by R>¢.

If A is a ring, A* denotes the set of its nonzero elements, and if A is
a ring with identity, A* denotes the multiplicative group of its invertible
elements.

If X and Y are sets, X \ Y denotes the relative complement of Y in X,
thatis, X \Y = {z € X : 2 ¢ Y}, and YX denotes the set of all functions
from X to Y. The cardinality of a set X is denoted by card(X).

A topological ring is simply a ring furnished with a topology for which
its algebraic operations are continuous:

1.1 Definition. A topology 7 on a ring A is a ring topology and A4,
furnished with T, is a topological ring if the following conditions hold:

(TR1) (x,y) — z +y is continuous from A x A to A
(TR 2) & — —z is continuous from A to A

(TR3) (z,y) — zy is continuous from A x A to A

1



2 TOPOLOGICAL RINGS AND MODULES

where A is given topology 7 and A x A the cartesian product topology
determined by 7T .

A ring topology on a ring A clearly induces a ring topology on any subring
of A, and unless the contrary is indicated, we shall assume that a subring
of a topological ring is furnished with its induced topology.

Norms furnish examples of topological rings:

1.2 Definition. A function N from a ring A to Ry is a norm if the
following conditions hold for all ¢, y € A:

(N 1) N(@©)=0

(N 2) N(z+y) < N(z)+ N(y)
(N 3) N(-z) = N(z)

(N 4) N(zy) < N(z)N(y)
(N 5) N(z) =0 only ifz = 0.

If N is a norm on a ring A, then d, defined by d(z,y) = N(z — y) for
all ¢,y € A, is a metric. Indeed, (N 1) and (N 5) imply that d(z,y) = 0 if
and only if ¢ = y, (N 3) implies that d(z,y) = d(y,z), and (N 2) yields the
triangle inequality, since

d(z,z) =N(z —2) = N((z—y) + (y — 2))
S N(z—y)+ N(y—2) =d(z,y) +d(y, 2).

If d is a complete metric, we say that IV is a complete norm.
Often symbols similar to ||..| are used to denote norms.

1.3 Theorem. Let N be a norm on a ring A. The topology given by
the metric d defined by N is a ring topology.

Proof. Let a, b€ A. Forall z, y € A,

d(z+y,a+b)=N((z+y) —(a+b) =N((z—a)+ (y—b))
< N(z—a)+ N(y—b) =d(z,a) +d(y,b).

Hence (TR 1) holds. For all z € A,d(—z,—a) = N(—z+a)=N(z —a) =
d(z,a) by (N 3). Hence (TR 2) holds. Finally, for all z, y € A,

d(zy,ab) = N((z — a)(y — b) + a(y — b) + (z — a)b)
<N(z—a)N(y—>b)+ N(a)N(y—b) + N(z — a)N(b).

Hence (TR 3) holds. e



1 EXAMPLES OF TOPOLOGICAL RINGS 3
1.4 Theorem. Let N be a norm on aring A. Forallz,y € A,
IN(z) = N(y)| < N(z —y),

and hence N is a uniformly continuous function from A (for the metric
defined by N) to R>g.

Proof. N(z) = N((z —y) +y) < N(z —y) + N(y), so N(z) - N(y) <
N(z — y). Hence also N(y) — N(z) < N(y — z) = N(z — y). Therefore
|IN(z) - N(y)| < N(z—y). o

In view of 1.3, we shall say that a topological ring is normable if its topol-
ogy is defined by a norm, and in §14 we shall give criteria for a topological
ring to be normable. A normed ring is simply a ring furnished with a norm
and hence with the topology defined by that norm.

Norms on rings play a substantial role in analysis:

Example 1. Let X be a set, B(X) the ring of all bounded real-valued (or
complex-valued) functions on X (a function f is bounded if N(f) < +oo0,
where N(f) = sup{|f(z)| : £ € X}). The function N just defined is a
complete norm on B(X), so B(X) and each of its subrings is a topological
ring for the topology defined by N. Special cases: (a) The ring of all
bounded continuous functions on a topological space X. (b) The ring of
all continuous functions f on a locally compact space X which “vanish at
infinity,” that is, such that for every ¢ > 0 there is a compact subset K
(depending on f) of X such that |f(z)| < e for all z € X \ K. (c) The ring
of all continuous functions on a compact space X. (A topological space X
is compact if it is Hausdorff and if every collection of open subsets of X
whose union is X contains finitely many members whose union is X, and
X is locally compact if it is Hausdorff and each point of X has a compact
neighborhood.)

Example 2. Let A be the ring of all analytic functions on a connected
open subset D of C, and let K be an infinite compact subset of D. Then
N, defined by N(f) = sup{|f(2)| : z € K}, is an incomplete norm on A
(Exercise 1.2).

Example 3. Let D be a bounded connected open subset of C, and let A be
the ring of all continuous complex-valued functions on D whose restrictions
to D are analytic functions. Then N, defined by

N(f)=sup{|f(2)|: z € D\ D},

is a complete norm on A.
Example 4. Let A be the ring of all continuous real-valued functions f on
a closed bounded interval [a,b] such that f has a continuous derivative f’



4 TOPOLOGICAL RINGS AND MODULES

on (a,b), and lim,_, .4 f'(z) and lim,_,;— f'(z) both exist. Then N, defined
by N(f) =sup{|f(z)|:a < z < b} +sup{|f'(z)|: a < = < b}, is a complete
norm on A.

Example 5. Let L' (N) be the set of all sequences (a;);>o of real numbers
such that ) ;o |ai| < +oo, and let N be defined on L'(N) by

oo

N((ai)ix0) = Z |as].

=0

Addition on L'(N) is defined by (a;)i>0+(bi)i>0 = (ai+b;)i>o. Under either
of the following two multiplications L*(N) is a ring and NN is a complete norm
on L'(N): (a) pointwise multiplication, i.e., (a;)i>0(bi)i>0 = (aibi)i>0; (b)
convolution, i.e.,

(@:)izo * (b:)izo = (O ajbi—j)izo-

=0

For an example of a nonmetrizable (in particular, a nonnormable) topo-
logical ring, it suffices to take the cartesian product of uncountably many
nonzero topological rings, in view of the following theorem:

1.5 Theorem. The cartesian product of a family (Ay)aeL of topological
rings is a topological ring.

We shall prove a more general theorem:

1.6 Theorem. Let (A))xecr be a family of topological rings, let A be a
ring, and let (f)aer be a family of functions such that for each A € L, fy
is a homomorphism from A to A). The weakest topology on A for which
each fy is continuous is then a ring topology.

Proof. That topology has as a basis of open sets all finite intersections
of sets of the form f;l(OA) where A € L and O, is open in Ay. It follows
at once that a function g from a topological space B to A is continuous for
this topology if and only if f) og is continuous from B to A, for each A € L.
In particular, let B = A x A, and let g be either addition or multiplication
on A, gy the corresponding composition on Ay. By the preceding, to show
that g is continuous, it suffices to show that fy o g is continuous from A x A
to Ay for all A € L. But fyog = gy o (fa x fa), where f\ X fy is the
function (z,y) — (fa(z), fa(y)) from A x A to Ay X Ay. Since fx and gy
are continuous, so is gx o (fa x fi). Thus g is continuous, and hence the
topology is a ring topology. e
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Theorem 1.5 thus follows by applying 1.6 to the case where

A=1J 4.

HEL

and for each A € L, fy = pry, the canonical projection from H#GL A, to Ay
(defined by pra((zu)uer) = zy).

1.7 Corollary. If (T))xerL is a family of ring topologies on a ring A,
then sup, ¢y, 7, is a ring topology.

Proof. That topology is the weakest on A such that for each A, the iden-
tity mapping from A to A, furnished with topology 7, is continuous. e

If 7; .. .7, are topologies on a ring A defined by norms Ny,...N,, it is
easy to see that sup;<;<, V; is a norm defining the topology sup;<;<, 7:.
This permits us to construct some unusual norms, for example, on the field
C of complex numbers. For this, we first observe that the only continuous
automorphisms of C are the identity automorphism and the conjugation
automorphism z — Z. Indeed, if ¢ is a continuous automorphism of C, then
o(z) = z for all z € Q, the prime subfield of C, so as o and the identity
function must agree on a closed set, o(z) = « for all z € R. On the other
hand, as o(i)? = 0(i%?) = o(—1) = —1, o(i) must be either i or —i. It
readily follows that o is the identity automorphism in the former case, the
conjugation automorphism in the latter.

By the general theory of algebraically closed fields, however, there are
nondenumerably many automorphisms of C, so there exists a noncontinuous
automorphism ¢ . We may further assume, by replacing o with its composite
with the conjugation isomorphism, if necessary, that o(z) = ¢. Let N(2) =
sup{|z|,|o(z)|}. Then N is a norm inducing the usual absolute value on
the subfield Q(z) of C, but, as we shall see later (Corollary 13.13), the
completion of C for the metric defined by IV may be identified with the ring
C x C and hence contains proper zero-divisors (i.e., nonzero zero-divisors).

1.8 Definition. Let K be a division ring. An absolute value on K is
a norm A such that A(zy) = A(z)A(y) forallz,y € K.

It follows that A(1) = 1 since A(1) = A(1)A(1) and A(1) # 0; more
generally, if z is a root of unity, (i.e., if 2 = 1 for some n > 1), then
A(z) =1.

The most familiar absolute values, of course, are the usual absolute values
on R,C, H, and their subfields.

If A is an absolute value on a division ring K, the elements z of A
satisfying A(z) < 1 may be characterized topologically as those elements
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such that lim,_,,, ™ = 0; in any topological ring, such an element is called
a topological nilpotent.

For any division ring K, the function A4, defined by A44(0) = 0 and
A4(z) =1 for all z € K*, is called the improper absolute value since the
topology it defines is the discrete topology. Moreover, it is the only absolute
value on K defining the discrete topology. Indeed, if A is an absolute value
other than A4, then A(z) # 1 for some 2 € K*, so either z or z7! is a
topological nilpotent, and therefore the topology defined by A is not the
discrete topology. In particular, the only absolute value on a finite field is
the improper absolute value. An absolute value on a division ring is proper
if it is not the improper absolute value.

1.9 Definition. Absolute values on a division ring are equivalent if
they define the same topology.

1.10 Theorem. Let A; and A, be proper absolute values on a division
ring K. The following statements are equivalent:

1° A; and As are equivalent.

2° The topology defined by A, is weaker than that defined by A;.
3° For all x € K, if A;(x) < 1, then Ay(z) < 1.

4° Ay = A7 for some r > 0.

Proof. If 2° holds and if A;(z) < 1, then z is a topological nilpotent for
the topology defined by A; and a fortiori for the weaker topology defined
by Ag, so A2(z) < 1. Assume 3°. As A; is proper, there exists zo € K
such that A;(zg) > 1. Then A4;(zp') < 1, so Aa(z;") < 1, and therefore
A, (:170) > 1. Let

r = log A2(x9)/log A1 (z0).

Let z € K*, and let s € R be such that 4;(z) = A;(z¢)*. Let m, n € Z,
n > 0. If m/n > s, then A;(z) < A;(zo)™™, so A;(z"z;™) < 1, thus
As(z™zg™) < 1, and therefore Ay(z) < Aa(zo)™/™. Similarly, if m/n < s,
then Ay (z) > Aa(z9)™/ ™. Hence As(z) = Ay(zg)*, so

log Az (z) = slog A2(zg) = srlog A1 (zo) = log A1 (z¢)*" = log A;(z)7,

and therefore Ay (z) = A;(z)".

1.11 Theorem. Let A be an absolute value on division ring K. The set
J of numbers r > 0 such that A™ is an absolute value is an interval of R
containing (0,1]. Moreover, the following statements are equvalent (where,
foranyn € Ny nl=1+-.--4+1 (n terms)):
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1°J = R>0.
2° Foralln €N, A(n.1) <1.
3° Forallz,y € K, A(z +y) < sup{A(z), A(y)}.

Proof. Let 0 < r < 1. For any ¢ € (0,1),0<1—-¢<1,s0c" > cand

(1—¢)" > 1—c, and therefore ¢" + (1 — ¢)” > 1. Applying this inequality to
c= A(z)/(A(z) + A(y)) where z, y € K*, we obtain

A(z)" + A(y)" 2 (A() + A(y))" 2 Az + )"

Thus r € J. Consequently, if s € J and 0 < t < s, then A* = (4°)(1/%)t, 50
At is an absolute value as 0 < t/s < 1.

For any absolute value |..|, |n.1| < n for all n € N by induction. Hence
if 1° holds, then for all 7 > 0, A(n.1)" < n and hence A(n.1) < nl/", so
A(n.1) < 1. Clearly 3° implies 1°.

Assume 2°. As A(y + 2) < A(y) + A(2) < 2sup{A(y),A(z)} for all
Yy, z € K, an inductive argument establishes that for any sequence (y;)1<i<2~
of 2" terms,

Ayr +- -+ +y2r) < 2"sup{A(y;) : 1< i< 27}

Let € K. Then forany r € N, if n =27 — 1,

Al+2z)" = A((1+ z)™) < 2" sup{A( (Z)zk) :0<k<n}

< 2" sup{A(z*) : 0 < k < n} = (n+1)sup{l, A(z)"},

so A(1+z) < (n+ 1)Y/"sup{1,A(z)}. Hence A(1 + z) < sup{l, A(z)}.
Thus, for any z, y € K*,

Az +y) = A(z) A1 + A(z " y))
< A(z)sup{l, A(z"'y)} = sup{A(z), A(y)}. »

1.12 Definition. An absolute value A on a division ring K is nonar-
chimedean if A(z + y) < sup{A(z),A(y)} for all z, y € K, archimedean
if it is not nonarchimedean.

By 1.11, an absolute value A on a division ring K is archimedean if and
only if A(n.1) > 1 for some n € N. Consequently, as a finite field admits
only the improper absolute value, a field admitting an archimedean absolute
value has characteristic zero.



