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PREFACE

This volume serves as a general introduction to the state of the
art of quantitatively characterizing chaotic and turbulent behavior. It
is the outgrowth of an international workshop on "Quantitative Measures of
Dynamical Complexity and Chaos" held at Bryn Mawr College, June 22-24,
1989. The workshop was co-sponsored by the Naval Air Development Center
in Warminster, PA and by the NATO Scientific Affairs Programme through its
special program on Chaos and Complexity.

Meetings on this subject have occurred regularly since the NATO
workshop held in June 1983 at Haverford College only two kilometers
distant from the site,of this latest in the series. At that first
meeting, organized by J. Gollub and H. Swinney, quantitative tests for
nonlinear dynamics and chaotic behavior were debated and promoted [1]. 1In
the six years since, the methods for dimension, entropy and Lyapunov
exponent calculations have been applied in many disciplines and the
procedures have been refined. Since then it has been necessary to
demonstrate quantitatively that a signal is chaotic rather than it being
acceptable to observe that "it looks chaotic". Other related meetings
have included the Pecos River Ranch meeting in September 1985 of G. Mayer-
Kress [2] and the reflective and forward looking gathering near Jerusalem
organized by M. Shapiro and I. Procaccia in December 1986 [3].

This meeting was proof that interest in measuring chaotic and
turbulent signals is widespread. Those facing limits of precision or
length of data sets are hard at work developing new algorithms and
refining the accuracy of old ones. Applications to symbolic dynamics and
to spatio-temporal dynamics are also now emerging with "complexity"™ as the
byword for what is even a richer subject than "chaos".

The success of the meeting was in large part guaranteed by the
enthusiasm of the participants, but without the tireless efforts of a few
key persons, the order of the meeting would have fallen victim to the ever
looming chaos. Special thanks go to Ann Daudert, secretary of the physics
department at Bryn Mawr College, and her assistant, Linath Lin. We also
acknowledge the behind-the-scenes and late-night efforts of the staff of
the Bryn Mawr Summer Conference Office under the direction of L. Zernicke.
Many others of our colleagues and associates contributed as needed,
including M.E. Farrell, G. Alman, H. Lin, and N. Tufillaro. To all of
them go our warmest gratitude. With help such as theirs, it will always
be more of a pleasure than a burden to organize a meeting.

Finally we should acknowledge special efforts that enlivened the
meeting. J. Doran and her staff provided excellent meals and
refreshments. L. Caruso-Haviland and a small crew of dedicated performers
and technical staff enriched one evening with "Chaotic Metamorphoses™, an
inspired combination of video, cinematography, choreography, and readings.
The program notes for the performance are included as part of these



vi

proceedings. Their conference T-shirts, "Complexity and Chaos at Bryn Mawr
College", were duly earned.

Perhaps our principal regret (and pleasure) will be the constant
task of explaining the scientific meaning of the T-Shirt title in an
effort to ride the public relations wave crest.

Neal Abraham
Alfonso Albano
Anthony Passamante
Paul Rapp

August 1989
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COMPLEXITY AND CHAOS

N.B. Abraham, A.M. Albano, and N.B. Tufillaro

Department of Physics
Bryn Mawr College
Bryn Mawr, PA 19010-2899, USA

1. INTRODUCTION

Turbulence was one of the key phenomena that motivated the resurgence
of interest in nonlinear dynamical systems. It was, after all,
investigations into the mechanisms for turbulence that led Ruelle and
Takens to invent the term "strange attractor" in 1971. The turbulence that
is described by strange attractors is "turbulence in time" (Schuster,
1988) -- deterministic chaos, or temporal chaos in current terminology. In
the past decade, a vocabulary for the quantitative characterization of
temporal chaos has been developed, and has been used to describe and
analyze an incredible variety of phenomena in practically all fields of
science and engineering. The dimensions of strange attractors, and the
entropies and Lyapunov exponents describing motions on them, have been
used to analyze heartbeats and brain waves, chemical reactions, lasers,
the economy, x-ray emissions of stars, flames, and fluid flow ...

Yet, this vocabulary is not sufficient to describe turbulence, for
turbulence is complexity not only in time but also in space. The
vocabulary needs to be enlarged to include the quantitative
characterization of spatial complexity and its time evolution. So
turbulence, once more, is the motivation for efforts to enlarge the scope
of nonlinear dynamics to include a description of spatio-temporal
complexity. These efforts include the use of modal expansions (reminiscent
of the old "mode-mode coupling” theories or "dressed-mode analyses"),
spatial correlation functions, coupled lattice models, and new approaches
based on the analysis of topological defects.

This workshop was an effort to describe the "state of the field" of
the quantitative characterization of complexity and chaos. The
presentations at the workshop included in these proceedings go a long way
towards that description. To enlarge the context and information for the
readers, we append to this introduction a bibliography of some of the most
recent references and a selection of other key articles. These are
organized both by methodology and the subject to which they are applied.
Further references can be found in the various chapters of this volume and
in the literature citations of other works listed here. (In the following,
papers appearing in this volume are followed by an asterisk).

Measures of Complexity and Chaos
Edited by N.B. Abraham er al.
Plenum Press, New York 1



2. CHARACTERIZING TEMPORAL CHAOS
(a) Calculational techniques, precision, error estimates

Dimensions, entropies and Lyapunov exponents have become the standard
measures of temporal chaotic behavior. Of these, perhaps because of the
possibility of attaching an intuitive geometric significance to them, and
because of the commonly made connection between fractal attractors and
chaotic behavior, dimensions have been used most frequently. This is also
because the algorithms for their computation seem to be the least
cumbersome. However, the relative simplicity of these methods can mask a
host of possible errors and difficulties. A comprehensive review of the
techniques used and the problems encountered in dimension calculations is
given in Theiler's review article (Theiler, 1989).

It is now common for a chaotic time series to be described by a
spectrum of dimensions, dg (=% < g < ), rather than by just one. The
dq 's are a hierarchy of dimensions introduced by Grassberger
(Grassberger, 1983) and by Hentschel and Procaccia (Hentschel and
Procaccia, 1983). These are defined by,

log Y pf
| lm i

dq= q-1r50 logr

where pj; is the number of points in the ith box of a partition consisting
of boxes of size r covering the attractor, typically one that is
reconstructed from a time series of a single measured variable by an
embedding in an m-dimensional space by the now familiar method of time
delays (Packard et al., 1980; Takens, 1980; Mané, 1980). dp is the
"fractal dimension" or the "capacity"™ and d; 1is the "information
dimension". The "correlation dimension", dp, is the most widely used
member of the hierarchy. Alternatively, the spectrum of scaling indices,
f(a), is also used (Halsey et al., 1986), where the variables (o,f(a))
are obtained from (q,d4) by a Legendre transformation:

_ 9 (g - 1)dg]

f(o) = g - (g-1)dg
9 q

There exist a number of algorithms for calculating dimensions

although that due to Grassberger and Procaccia (Grassberger and Procaccia

1983, 1983a, 1983b) for the correlation dimension remains the most widely

used because it remains the easiest to implement. The Grassberger-

Procacia algorithm is often called a "fixed volume" technique as it

involves counting the average number of points in a hypersphere or

hypercube as function of the radius, r. "Fixed mass"™ algorithms (Termonia

and Alexandrovicz, 1983; Badii and Politi, 1985), on the other hand,

involve the determination of the radius of a hypersphere that contains a
d-

given number of points, N, as a function of N. These numbers scale as r

1

and NE, respectively. The Grassberger-Procaccia correlation integral,
logZpiz, has also been modified into a statistical test for potential

forecastibility or hidden recurrent pattterns in an observed time series
(Brock and Dechert*) .

Though in some cases it appears that dimensions can be reliably
extracted with as few as 500 data points, the minimum sufficient number of
data points, and the optimum data sampling rate and embedding delay, all
depend critically on the uniformity of the strange attractor and its
dimension. Sometimes a total number of points as few as N = 109 for an
attractor of dimension d can be sufficient, but various parameters of the



embedding need to be optimized. (Note that Smith (Smith, 1988) has a
proof that the lower bound of the number of points to avoid spurious
results is N = 429) .

There are problems with the standard methods, however, especially when
they are used with noise-corrupted data sets of limited size and
limited precision (the only kind obtainable from experiments). Each of
these lead to different and often overlapping problems. A number of these
problems were considered in this workshop.

In constructing an embedding, one must select the sampling rate for
the data acquisition of the time series, the total length of the time
series, the delay between successive elements of an embedding vector, the
spacing in time between the first elements of successive embedding
vectors, and the total number of embedding vectors. Arbitrary selection of
these parameters can introduce significant systematic errors in the
construction or coverage, of the attractor. One key quantity appears to be
the window used in the embedding -- i.e., the time spanned by each
embedding vector. It is known that the results of dimension calculations
depend rather sensitively on this choice. Current lore suggests "rule of
thumb" criteria based on the correlation time determined from the inverse
of the bandwidth of the signal's power spectrum or the first zero,
minimum, or the decay of the envelope of the autocorrelation function.
Fraser* and Schuster* suggest improved criteria for making this choice.

Caputo* and Politi* address the problem of data requirements, Lange¥*
investigates systematic errors due to finite precision and noise and
proposes strategies Ior correcting these errors. Kostelich* presents a
procedure for decreasing the effects of noise, while Hunt*, Sayers* and
Theiler* address the problem of obtaining realistic error estimates for
the dimensions and entropies that are extracted.

Another dimension-seeking strategy is to determine an "intrinsic
dimension”, a minimal embedding dimension for the time series. One
procedure is to use a singular value decomposition (Broomhead and King,
1986) to determine the smallest number of orthogonal directions needed to
describe the data. When applied locally to get an average local intrinsic
dimension, it is known to be fairly robust relative to noise (Passamante
et al., 1989). Passamante, Hediger and Farrell* discuss the use of an
information theoretic criterion to determine local dimension. Goel and
Rao* present other criteria.

Dimensions and additional topological properties of strange sets are
also obtainable from unstable periodic orbits. Some aspects of these
procedures are discussed by Schuster*, Auerbach*, Glendinning*, Smith* as
well as by Gilmore* and Solarix*.

Continuously varying signals can also be characterized by smaller sets
of information. For example, a Poincaré section of a periodic signal
selects the value of the signal once every clock cycle. Externally driven
systems have well defined clock frequencies. For autonomous systems
Poincaré sections are defined by when the trajectory in the reconstructed
attractor crosses a selected hyperplane. Similar data reduction procedures
involve the study of the sequence of peak values of the signals or the
sequence of time intervals between peaks. The dimension of such a subset
is one less than the dimension of the corresponding continuous trajectory.

The logical and more sophisticated extension of these classification
schemes involves the invention of a set of symbols used to represent
different types of behavior of the system. The sequences of symbols can
be analyzed for the "syntax" and "grammar" of the "language" of the
dynamics. Conditional probabilities and the relative probability of
unique sequences can be used to define a degree of complexity and an
entropy production rate for the system. Questions of selection of a set of
symbols and enlargement of that set were addressed by Badii*, Crutchfield*
and Fraser*, among others.



It has been difficult to calculate Lyapunov exponents from
experimental data principally because available procedures are not
sufficiently robust against noise in experimental data. Several algorithms
have been proposed by a number of investigators (Wolf, 1985; Eckmann et
al., 1986; Sato et al. 1987; Stoop and Meier, 1988) but others have had
their problems implementing these on experimental results. Most
experimental data sets are of insufficient precision, sampling rate, or
length to permit the use of these algorithms on them with consistent
reliability or success. Use of the algorithms on data generated by
numerical simulations are obviously more straightforward and have been
more universally successful. Glover* presents a technique that calculates
Lyapunov exponents more efficiently using the Poincaré sections.

Although entropies Kq can be calculated by means of the same
correlation integral that is used to calculate dimensions dg, they have
not been as widely used as dimensions, either. There are growing
indications, though, that entropies may be more robust quantities than
dimensions (in that they seem to be invariant under linear filtering of
the data, while the dimensions are not similarly invariant [see Lange*])
and may well find more use in the future. Though the relationship between
power spectra (and thus correlation functions) and entropies is not
rigorously established, evidence has been consistently reported that the
bandwidth of power spectra and the decay of the envelope of
autocorrelation functions are excellent estimators for the entropies.
Applications to measures of the complexity of symbolic sequences will
increase as ways are explored to reduce the artificial complexity of
continuous variables used to describe low dimensional phenomena.

It is also worth noting that internal consistency of the results can
be tested since the entropy is a good estimator for the positive Lyapunov
exponent (if there is only one). Furthermore, there is the Kaplan-Yorke
conjecture (Kaplan, 1979) on the relationship between the dimension and
the Lyapunov exponents,

j

P
i
|01
where j is the largest integer for which 0<M+MA2+--+X  This seems to

be particularly accurate for larger systems with only a single positive
Lyapunov exponent.

dr = J +

(b) Routes to Chaos and a new standard: Homoclinic and Heteroclinic
bi Shilnil }

Historically, once some degree of universality was assured, routes to
chaos were commonly used as indicators that irregular behavior was indeed
dynamical chaos. While these qualitative methods relying on changes in
power spectra have fallen in disfavor when more quantitative methods can
be applied, the simplicity of a new system following generic routes to
chaos is still powerful when one is analyzing experimental data.
Nevertheless, countless studies have shown that the universality can break
down or become more complex, with truncated period-doubling sequences
occuring when there are two controlling parameters rather than one.
Quasiperiodicity is equally generic in reaching chaos through locking of
the previously incommensurate frequencies and then period doubling of the
locked conditions. Only for a few special cases does the incommensurate
nature remain until chaos appears with a third frequency.

Another now common route through periodic and chaotic dynamics
include sequences of symmetry breaking bifurcations (in systems described
by an underlying inversion symmetry) and then glueing bifurcations that
restore the symmetry with a higher degree of complexity (Hennequin et al.*).



Chaos related to homoclinic or heteroclinic orbits also seems to come
in some relatively standard forms. Signatures include the similarity of
the topology of successive trajectories around a topologically simple
attractor even though the times for successive trajectories may differ
widely. Near these homoclinic orbits there are infinite sets of periodic
orbits involving different numbers of spirals. Beyond qualitative
measures, it now appears that Poincaré plots of return time maps may be
the best indicators of the multileaved structures created by the complex
homoclinic chaos. Because of the intricate topological structure of these
attractors their sensitivity to noise will also be a subject of
considerable ongoing investigation. The structure in the return plots
will also probably be a major source of data for studies of symbolic
dynamics in the future. The new interest in the dynamics of homoclinic
and heteroclinic chaos is driven by the experimental observations of such
phenomena in chemical reactions (Argoul* and Arneodo*) and lasers
(Arecchi* Arimondo*, Glorieux*, Weiss*).

Homoclinic orbits and coherent transients are now also an ordering
feature in the study of spatial dynamics. Nikolaenko* demonstrated the
importance of local homoclinic behavior in driving spatio-temporal
dynamics and Newell (Newell et al., 1988) has also recently focused on the
role of local coherent transients and their propagation as a governing
feature of turbulence.

(c) Applications to real-world data

The large variety of fields in which dimensions, entropies,
and exponents have been used to characterize complex temporal evolution
is an indication of the extent to which these quantities have become
elements of a scientific vocabulary that is now practically universal.
The worksop saw these quantities used to characterize astrophysical
data (Atmanspacher*), dendritic growth (Argoul*), electroencephalographic
and electrocardiographic data (Babloyantz*), nerve fibers (Frame¥*),
economics (Brock and Dechert*), epidemics (Schaffer*), fluids (Gollub*,
Ciliberto*, Nikolaenko*, Sreenivasan), flames (Sreenivasan) and lasers
(Arecchi*, Arimondo*, Glorieux*, Tamm*, Raymer*, Weiss*).

As one of the most basic applications of these methods, dimensions
have been used to discriminate between chaos and noise. In many
situations, it is possible to distinguish those phenomena that result
from the combined effects of extremely many independent processes and
which therefore may be regarded as stochastic from those that may be
described as low-dimensional deterministic processes. Beyond this,
dimension calculations have made possible the direct comparison of
computational and experimental results.

An example of a comparison between theory and experiment that goes
beyond mere matching of the dimensions of experimental data and results of
numerical simulations was presented by Weiss* . He described results
obtained with a laser woxking in a region in parameter space where its
operation is described by the Lorenz equations, making it possible to make
some very meticulous comparisons between theory and experiment.
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It is almost paradoxical that a chaotic time series, characterized
by sensitive dependence to initial conditions which renders its distant
future values unpredictable in practice, should be the subject of
prediction algorithms (Farmer and Sidorowitz, 1987, 1988; Crutchfield and
MacNamara, 1987). Yet, since it is deterministic, it is governed by a
dynamical law which is discoverable, at least in principle. Badii and
Sepulveda*, Crutchfield*, Mees*, Smith*, and Schuster* present various
approaches to the short-term prediction problem.



3. CHARACTERIZING SPATIO-TEMPORAL COMPLEXITY

(a) Modal expansions, spatial correlation functions, coupled lattice
medels

The characterization of spatially complex nonlinear systems is
complicated by the fact that sums of solutions are no longer themselves
solutions as in the case of linear systems. The time evolution of
nonlinear systems can thus no longer be simply described in terms of
independently evolving modes. Nevertheless, the system can still be
described by expansions over characteristic spatial modes, but one must
recognize that the time evolutions of these modes are coupled.

Another alternative is the use of spatial correlation functions. One
definition of turbulence, proposed by Heslot et al. (1987), is in terms of
the decay of the spatial correlation function in a system with spatio-
temporal dynamics which are locally chaotic. However, such a definition
will clearly reject as not turbulent systems which are described by a
small number of spatial modes with time-dependent amplitudes. Clearly,
some intermediate approaches to characterization for systems of moderate
size are still needed.

A variety of methods are used by Gollub* to characterize
parametrically driven surface waves and by Oppo* to describe lasers with
many transverse modes.

Another possibility of describing a spatially inhomogeneous system is
to model the system on a lattice in which the dynamics at each lattice
point is influenced by interactions with a few near neighbors. Coupled
lattice models are discussed by Kapral*, while some problems associated
with calculating dimensions for these models are presented by Politix*.

(b) Defect-mediated order-disorder transitions

Defect-mediated turbulence is emerging as a promising paradigm for
studying weak turbulence in large aspect ratio systems, i.e., systems in
which the size of the basic spatial structure is much less than the size
of the system. The inspiration for these ideas comes from analogies with
defect-mediated phase transitions in equilibrium systems.

Different theoretical approaches to defect formation in non-
equilibrium systems are discussed by Coullet and Procaccia. Coulletx*
described the usefulness of the Ginzburg-Landau equation in understanding
the essential features of defect formation, annihilation, and dynamics.
Earlier applications to convective systems were supplemented by
illustrations appropriate to large-aperture lasers. In contrast,
Procaccia* developed a field theory which described the free dynamics and
interdefect forces exhibited at finite range. Aspects of this field theory
were illustrated by experimental data from electroconvecting nematics.

Several experimental examples of defect formation in far from
equilibrium systems are discussed in Part III of these proceedings.
Gollub* discussed the dynamics of parametrically forced surface waves
which illustrate temporal chaos at small aspect ratios, and possibly a
defect-mediated order-disorder transition at large aspect ratios. Defects
might also be found in convective fluid systems such as those described by
Ciliberto*, and in lasers with many transverse modes as discussed by
Oppo*. The strongest evidence for defect-mediated transitions, however,
are to be found in nematics and large aspect-ratio Rayleigh-Bénard
convection.



