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Preface

Machine learning is rapidly becoming one of the most important areas of
general practice, research and development activity within computing science.
This is reflected in the scale of the academic research area devoted to the
subject and the active recruitment of machine learning specialists by major
international banks and financial institutions as well as companies such as
Microsoft@, Google®, Yahoo® and Amazon®.

This growth can be partly explained by the increase in the quantity and
diversity of measurements we are able to make of the world. A particularly
fascinating example arises from the wave of new biological measurement tech-
nologies that preceded the sequencing of the first genomes. It is now possible
to measure the detailed molecular state of an organism in ways that would
have been hard to imagine only a short time ago. Such measurements go far
beyond our understanding of these organisms and machine learning techniques
have been heavily involved in the distillation of useful structures from them.

This book is based on material presented in a machine learning course
in the School of Computing Science at the University of Glasgow, UK. The
course, presented to final year undergraduates and taught by postgraduates, is
made up of 20 hour-long lectures and 10 hour-long laboratory sessions. In such
a short teaching period, it is impossible to cover more than a small fraction of
the material that now comes under the banner of machine learning. Our inten-
tion when teaching this course, therefore, is to present the core mathematical
and statistical techniques required to understand some of the most popular
machine learning algorithms and then present a few of these algorithms that
span the main problem areas within machine learning: classification, cluster-
ing and projection. At the end of the course, the students should have the
knowledge and confidence to be able to explore machine learning literature to
find methods that are more appropriate for them. The same is hopefully true
of readers of this book.

Due to the varying mathematical literacy of students taking the course,
we assume only very minor mathematical pre-requisites. An undergraduate
student from computer science, engineering, physics (or any other numeri-
cal subject) should have no problem. This does not preclude those without
such experience — additional mathematical explanations appear throughout
the text in comment boxes. In addition, important equations have been high-
lighted — it is worth spending time understanding these equations before pro-
ceeding.

Xix



XX Preface

Students attending this course often find the practical sessions very useful.
Experimenting with the various algorithms and concepts helps transfer them
from an abstract set of equations into something that could be used to solve
real problems. We have attempted to transfer this to the book through an
extensive collection of MATLAB® /Octave! scripts, available from the asso-
ciated web page and referenced throughout the text. These scripts enable the
user to recreate plots that appear in the book and investigate changing model
specifications and parameter values.

Finally, the machine learning methods that are covered in this book are
our choice of those we feel students should understand. In limited space and
time, we think that it is more worthwhile to give detailed descriptions and
derivations for a small number of algorithms than attempt to cover many al-
gorithms at a lower level of detail — many people will not find their favourite
algorithms within this book!

MATLAB® js a registered trademark of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com

Simon Rogers and Mark Girolami

'A free mathematical software environment, available from www.gnu.org/software/
octave/
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