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Preface

Reliable computing techniques are essential if the validity of the output of a nu-
merical algorithm is to be guaranteed to be correct. Our society relies more and
more on computer systems. Usually, our systems appear to work successfully,
but there are sometimes serious, and often minor, errors. Validated computing
is one essential technology to achieve increased software reliability. Formal ri-
gor in the definition of data types, the computer arithmetic, in algorithm design,
and in program execution allows us to guarantee that the stated problem has (or
does not have) a solution in an enclosing interval we compute. If the enclosure
is narrow, we are certain that the result can be used. Otherwise, we have a clear
warning that the uncertainty of input values might be large and the algorithm
and the model have to be improved. The use of interval data types and algo-
rithms with controlled rounding and result verification capture uncertainty in
modeling and problem formulation, in model parameter estimation, in algorithm
truncation, in operation round-off, and in model interpretation.

The techniques of validated computing have proven their merits in many
scientific and engineering applications. They are based on solid and interesting
theoretical studies in mathematics and computer science. Contributions from
fields including real, complex and functional analysis, semigroups, probability,
statistics, fuzzy interval analysis, fuzzy logic, automatic differentiation, computer
hardware, operating systems, compiler construction, programming languages,
object-oriented modeling, parallel processing, and software engineering are all
essential.

This book, which contains the proceedings of the Dagstuhl Seminar 03041
‘Numerical Software with Result Verification’ held from January 19 to 24, 2003,
puts particular emphasis on the most recent developments in the area of validated
computing in the important fields of software support and in applications.

We have arranged the contributions in five parts. The first part deals with
languages supporting interval computations. The paper by Wolff von Gudenberg
studies different object-oriented languages with respect to their abilities and
possibilities to efficiently support interval computations. The contribution by
Hofschuster and Kréamer gives an overview of the C-XSC project, a C++ class
library supporting intervals, the precise scalar product, standard functions with
intervals, and various class abstractions useful for scientific computation.

The second part is devoted to software systems and tools. In a joint pa-
per, Kearfott, Neher, Oishi and Rico present and compare four such systems:
GlobSol, a Fortran-based library for the verified solution of nonlinear algebraic
systems of equations and global optimization; ACETAF, an interactive tool for
the verified computation of Taylor coefficients; Slab, a complete Matlab-style
high-performance interval linear algebra package; and (Fixed) CADNA, a tool
for assessing the accuracy and stability of algorithms for embedded systems
relying on a fixed-point arithmetic. Whereas the first three software systems
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use (machine) interval arithmetic, the latter is based on the CESTAC method
and its stochastic arithmetic. Going beyond double precision in machine inter-
val arithmetic is the topic of the paper by Grimmer, Petras and Revol. They
describe intPackX, a Maple module which, among others, provides correctly ro-
unded multiprecision evaluation of standard functions, and the two C/C++ ba-
sed libraries GMP-XSC and MPFI. The authors include several examples where
multiple precision interval arithmetic is of primary importance, for example to
show the existence of Kronrod-Patterson rules for numerical integration or in
the numerical solution of ODEs in Asian options pricing. The last paper in this
part is by Corliss and Yu who report on their approach and their strategy and
experience when testing a preliminary version of an interval software package
for its correctness.

As software supporting interval and validated computation becomes more
and more popular, we witness an increasing number of new modeling techni-
ques using intervals. The third part of this volume contains five papers on these
topics. Kieffer and Walter consider parameter and state estimation in dyna-
mical systems involving uncertain quantities. For cooperative models, they use
interval-based set inversion techniques to obtain tight bounds on the parameters
and states under the given uncertainties. In an additional paper, together with
Braems and Jaulin, they propose a new, interval computation-based technique
as an alternative to computer algebra when testing models for identifiability.
Auer, Kecskeméthy, Téndl and Traczinski show that interval analysis provides
new opportunities to model multibody systems and they present an advanced
software system MOBILE that includes such interval techniques. Biihler, Dy-
llong and Luther discuss reliable techniques in computational geometry. They
focus on distance and intersection computations, an area where slightly wrong
floating-point results may produce a completely wrong view of the geometry.
The last paper by Alefeld and Mayer deals with the more fundamental issue of
how interval arithmetic iterations behave when applied to solve linear systems
with a singular coefficient matrix.

Part four considers various applications of validation techniques in science
and engineering. It starts with a contribution by Beelitz, Bischof, Lang and
Schulte Althoff on methods that guarantee the absence of singularities in cer-
tain models for the analysis and design of chemical processes. This is of primary
importance, since otherwise multiple steady states may result in spontaneous
fluctuations which may even damage the chemical reactor. Fausten and Haf$-
linger consider workload distributions of service systems in telecommunications
under quality-of-service aspects. They develop a method to determine workload
distributions involving a verification step based on interval arithmetic. Three im-
portant problems in geodesy are dealt with in the paper by Borovac and Heindl,
who present verified methods for the direct and the inverse problem of geodetic
surveying and the three-dimensional resection problem. Among others, enclosure
methods for ODEs turn out to be very useful here. Schichl describes the CO-
CONUT project, a large, European, modular software project for constrained
global optimization. The paper explains the architecture of this software system,
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which uses the FILIB++ library for its components based on interval arithme-
tic. Finally, the paper by Oussena, Henni and Alt describes an application from
medical imaging in which verified computations would be of great help.

The last part is devoted to alternative approaches to the verification of nume-
rical computations. The contribution by Lester shows how one can use the formal
specification checker PVS to validate standard functions like arctan and some
exact arithmetic algorithms. Granvilliers, Kreinovich and Miiller present three
alternative or complementary approaches to interval arithmetic in cases where
uncertainty goes beyond having bounds on input data: interval consistency tech-
niques, techniques using probabilistic information and techniques for processing
exact real numbers. This part closes with the paper by Putot, Goubault and
Martel, who propose the use of static code analysis to study the propagation of
round-off. They also present a prototype implementation of their approach.

We would like to thank all authors for providing us with their excellent
contributions and for their willingness to join in groups to present a coherent
description of related research and software. We are also grateful to Springer-
Verlag for the fruitful cooperation when preparing this volume and, last but not
least, to the referees listed below.

January 2004 René Alt
Andreas Frommer

R. Baker Kearfott

Wolfram Luther

Referees

R. Alt R.B. Kearfott K. Petras

G. Alefeld M. Kieffer G. Plonka-Hoch
J.-M. Chesneaux W. Kramer M. Plum

G. Corliss V. Kreinovich E. Reinhardt
A. Csallner B. Lang N. Revol

T. Csendes W. Luther S. Rump

A. Frommer R. Martin L. Salinas

J. Garloff G. Mayer H. Traczinski
L. Granvilliers N. Miiller E. Walter

G. Heindl N. Nedialkov J. Wolft v. Gudenberg
P. Hertling M. Neher

C. Jansson W. Otten



Lecture Notes in Computer Science

For information about Vols. 1-2856

please contact your bookseller or Springer-Verlag

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Bohm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2983: S. Istrail, M. Waterman, A. Clark (Eds.), Com-
putational Methods for SNPs and Haplotype Inference.
IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004.

Vol. 2981: C. Miiller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing — ARCS 2004. X1, 339
pages. 2004.

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K.-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XXIV, 925
pages. 2004.

Vol. 2970: F. Fernandez Rivera, M. Bubak, A. G6mez Tato,
R. Doallo (Eds.), Grid Computing. XI, 328 pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology — CT-
RSA 2004. XI, 387 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. XI, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, 1. Matta, V. Tsaous-

sidis (Eds.), Wired/Wireless Internet Communications.
X1, 307 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-
bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-
entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Vol. 2951: M. Naor (Ed.), Theory of Cryptography. XI,
523 pages. 2004.

Vol. 2949: R. De Nicola, G. Ferrari, G. Meredith (Eds.),
Coordination Models and Languages. X, 323 pages. 2004.

Vol. 2947: F. Bao, R. Deng, J. Zhou (Eds.), Public Key
Cryptography — PKC 2004. XI, 455 pages. 2004.

Vol. 2946: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design II. VII, 267 pages. 2004.

Vol. 2943: J. Chen, J. Reif (Eds.), DNA Computing. X,
225 pages. 2004.

Vol. 2941: M. Wirsing, A. Knapp, S. Balsamo (Eds.), Rad-
ical Innovations of Software and Systems Engineering in
the Future. X, 359 pages. 2004.

Vol. 2940: C. Lucena, A. Garcia, A. Romanovsky, J. Cas-
tro, P.S. Alencar (Eds.), Software Engineering for Multi-
Agent Systems I1. XII, 279 pages. 2004.

Vol. 2939: T. Kalker, I. Cox, Y.M. Ro (Eds.), Digital Wa-
termarking. XII, 602 pages. 2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation. XI, 325 pages.
2004.

Vol. 2934: G. Lindemann, D. Moldt, M. Paolucci (Eds.),
Regulated Agent-Based Social Systems. X, 301 pages.
2004. (Subseries LNAI).

Vol. 2930: F. Winkler (Ed.), Automated Deduction in Ge-
ometry. VIL, 231 pages. 2004. (Subseries LNAI).

Vol. 2926: L. van Elst, V. Dignum, A. Abecker, Agent-
Mediated Knowledge Management. XI, 428 pages. 2004.
(Subseries LNAI).

Vol. 2923: V. Lifschitz, I. Niemeli (Eds.), Logic Program-
ming and Nonmonotonic Reasoning. IX, 365 pages. 2004.
(Subseries LNAI).

Vol. 2919: E. Giunchiglia, A. Tacchella (Eds.), Theory and
Applications of Satisfiability Testing. X1, 530 pages. 2004.

Vol. 2917: E. Quintarelli, Model-Checking Based Data
Retrieval. XVI, 134 pages. 2004.

Vol. 2916: C. Palamidessi (Ed.), Logic Programming. XII,
520 pages. 2003.

Vol. 2915: A. Camurri, G. Volpe (Eds.), Gesture-Based
Communication in Human-Computer Interaction. XIII,
558 pages. 2004. (Subseries LNAI).

Vol. 2914: P.K. Pandya, J. Radhakrishnan (Eds.), FST TCS
2003: Foundations of Software Technology and Theoret-
ical Computer Science. XIII, 446 pages. 2003.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing - HiPC 2003. XX, 512 pages. 2003.
(Subseries LNAI).

Vol. 2911: TM.T. Sembok, H.B. Zaman, H. Chen, S.R.
Urs, S.H. Myaeng (Eds.), Digital Libraries: Technology
and Management of Indigenous Knowledge for Global
Access. XX, 703 pages. 2003.

Vol. 2910: M.E. Orlowska, S. Weerawarana, M.M.P. Pa-
pazoglou, J. Yang (Eds.), Service-Oriented Computing -
ICSOC 2003. X1V, 576 pages. 2003.



Vol. 2909: R. Solis-Oba, K. Jansen (Eds.), Approximation
and Online Algorithms. VIII, 269 pages. 2004.

Vol. 2909: K. Jansen, R. Solis-Oba (Eds.), Approximation
and Online Algorithms. VIII, 269 pages. 2004.

Vol. 2908: K. Chae, M. Yung (Eds.), Information Security
Applications. XII, 506 pages. 2004.

Vol. 2907: 1. Lirkov, S. Margenov, J. Wasniewski, P.
Yalamov (Eds.), Large-Scale Scientific Computing. XI,
490 pages. 2004.

Vol. 2906: T. Ibaraki, N. Katoh, H. Ono (Eds.), Algorithms
and Computation. XVII, 748 pages. 2003.

Vol. 2905: A. Sanfeliu, J. Ruiz-Shulcloper (Eds.), Progress
in Pattern Recognition, Speech and Image Analysis. X VII,
693 pages. 2003.

Vol. 2904: T. Johansson, S. Maitra (Eds.), Progress in
Cryptology - INDOCRYPT 2003. XI, 431 pages. 2003.

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), A1 2003: Ad-
vances in Artificial Intelligence. XVI, 1075 pages. 2003.
(Subseries LNAI).

Vol. 2902: EM. Pires, S.P. Abreu (Eds.), Progress in Artifi-
cial Intelligence. XV, 504 pages. 2003. (Subseries LNAI).

Vol. 2901: F. Bry, N. Henze, J. Ma luszyniski (Eds.), Prin-
ciples and Practice of Semantic Web Reasoning. X, 209
pages. 2003.

Vol. 2900: M. Bidoit, P.D. Mosses (Eds.), Casl User Man-
ual. XIII, 240 pages. 2004.

Vol. 2899: G. Ventre, R. Canonico (Eds.), Interactive Mul-
timedia on Next Generation Networks. XIV, 420 pages.
2003.

Vol. 2898: K.G. Paterson (Ed.), Cryptography and Coding.
IX, 385 pages. 2003.

Vol. 2897: O. Balet, G. Subsol, P. Torguet (Eds.), Virtual
Storytelling. XI, 240 pages. 2003.

Vol. 2896: V.A. Saraswat (Ed.), Advances in Computing
Science — ASTAN 2003. VIII, 305 pages. 2003.

Vol. 2895: A. Ohori (Ed.), Programming Languages and
Systems. XIII, 427 pages. 2003.

Vol. 2894: C.S. Laih (Ed.), Advances in Cryptology - ASI-
ACRYPT 2003. XIII, 543 pages. 2003.

Vol. 2893: J.-B. Stefani, I. Demeure, D. Hagimont (Eds.),
Distributed Applications and Interoperable Systems. XIII,
311 pages. 2003.

Vol. 2892: F. Dau, The Logic System of Concept Graphs
with Negation. XI, 213 pages. 2003. (Subseries LNAI).

Vol. 2891: J. Lee, M. Barley (Eds.), Intelligent Agents
and Multi-Agent Systems. X, 215 pages. 2003. (Subseries
LNAID).

Vol. 2890: M. Broy, A.V. Zamulin (Eds.), Perspectives of
System Informatics. XV, 572 pages. 2003.

Vol. 2889: R. Meersman, Z. Tari (Eds.), On The Move
to Meaningful Internet Systems 2003: OTM 2003 Work-
shops. XIX, 1071 pages. 2003.

Vol. 2888: R. Meersman, Z. Tari, D.C. Schmidt (Eds.), On
The Move to Meaningful Internet Systems 2003: CooplS,
DOA, and ODBASE. XXI, 1546 pages. 2003.

Vol. 2887: T. Johansson (Ed.), Fast Software Encryption.
IX, 397 pages. 2003.

Vol. 2886: 1. Nystrom, G. Sanniti di Baja, S. Svensson
(Eds.), Discrete Geometry for Computer Imagery. XII,
556 pages. 2003.

Vol. 2885: J.S. Dong, J. Woodcock (Eds.), Formal Meth-
ods and Software Engineering. X1, 683 pages. 2003.

Vol. 2884: E. Najm, U. Nestmann, P. Stevens (Eds.), For-
mal Methods for Open Object-Based Distributed Systems.
X, 293 pages. 2003.

Vol. 2883: J. Schaeffer, M. Miiller, Y. Bjornsson (Eds.),
Computers and Games. XI, 431 pages. 2003.

Vol. 2882: D. Veit, Matchmaking in Electronic Markets.
XYV, 180 pages. 2003. (Subseries LNAI).

Vol. 2881: E. Horlait, T. Magedanz, R.H. Glitho (Eds.),
Mobile Agents for Telecommunication Applications. IX,
297 pages. 2003.

Vol. 2880: H.L. Bodlaender (Ed.), Graph-Theoretic Con-
cepts in Computer Science. XI, 386 pages. 2003.

Vol. 2879: R.E. Ellis, T.M. Peters (Eds.), Medical Image
Computing and Computer-Assisted Intervention - MIC-
CAI2003. XXXIV, 1003 pages. 2003.

Vol. 2878: R.E. Ellis, T.M. Peters (Eds.), Medical Image

Computing and Computer-Assisted Intervention - MIC-
CAI 2003. XXXIII, 819 pages. 2003.

Vol. 2877: T. Bohme, G. Heyer, H. Unger (Eds.), Innova-
tive Internet Community Systems. VIII, 263 pages. 2003.

Vol. 2876: M. Schroeder, G. Wagner (Eds.), Rules and
Rule Markup Languages for the Semantic Web. VII, 173
pages. 2003.

Vol. 2875: E. Aarts, R. Collier, E.v. Loenen, B.d. Ruyter
(Eds.), Ambient Intelligence. XI, 432 pages. 2003.

Vol. 2874: C. Priami (Ed.), Global Computing. XIX, 255
pages. 2003.

Vol. 2871: N. Zhong, Z.W. Ras, S. Tsumoto, E. Suzuki
(Eds.), Foundations of Intelligent Systems. XV, 697 pages.
2003. (Subseries LNAI).

Vol. 2870: D. Fensel, K.P. Sycara, J. Mylopoulos (Eds.),
The Semantic Web - ISWC 2003. XV, 931 pages. 2003.

Vol. 2869: A. Yazici, C. Sener (Eds.), Computer and Infor-
mation Sciences - ISCIS 2003. XIX, 1110 pages. 2003.

Vol. 2868: P. Perner, R. Brause, H.-G. Holzhiitter (Eds.),
Medical Data Analysis. VIIL, 127 pages. 2003.

Vol. 2866: J. Akiyama, M. Kano (Eds.), Discrete and Com-
putational Geometry. VIII, 285 pages. 2003.

Vol. 2865: S. Pierre, M. Barbeau, E. Kranakis (Eds.), Ad-
Hoc, Mobile, and Wireless Networks. X, 293 pages. 2003.

Vol. 2864: A K. Dey, A. Schmidt, J.F. McCarthy (Eds.),
UbiComp 2003: Ubiquitous Computing. X VII, 368 pages.
2003.

Vol. 2863: P. Stevens, J. Whittle, G. Booch (Eds.), “UML”
2003 - The Unified Modeling Language. X1V, 415 pages.
2003.

Vol. 2860: D. Geist, E. Tronci (Eds.), Correct Hardware
Design and Verification Methods. XII, 426 pages. 2003.
Vol. 2859: B. Apolloni, M. Marinaro, R. Tagliaferri (Eds.),
Neural Nets. X, 376 pages. 2003.

Vol. 2857: M.A. Nascimento, E.S. de Moura, A.L. Oliveira
(Eds.), String Processing and Information Retrieval. XI,
379 pages. 2003.



Table of Contents

Languages

OOP and Interval Arithmetic — Language Support and Libraries . ... .. .. 1
Jirgen Wolff von Gudenberg

C-XSC 2.0: A C++ Library for Extended Scientific Computing ......... 15
Werner Hofschuster, Walter Krdmer

Software Systems and Tools

Libraries, Tools, and Interactive Systems for Verified
Computations: Four Case Studies .............. ... ... 36
R. Baker Kearfott, Markus Neher, Shin’ichi Oishi, Fabien Rico

Multiple Precision Interval Packages:
Comparing Different Approaches............ ... ... ... .......... ... 64
Markus Grimmer, Knut Petras, Nathalie Revol

Interval Testing Strategies Applied to COSY’s Interval and
Taylor Model Arithmetic.............. .. ... .. ... ... .......... 91
George F. Corliss, Jun Yu

New Verification Techniques Based on Interval
Arithmetic

Nonlinear Parameter and State Estimation for Cooperative
Systems in a Bounded-Error Context .................... . ........ ... 107
Michel Kieffer, Eric Walter

Guaranteed Numerical Computation as an Alternative to
Computer Algebra for Testing Models for Identifiability . ............... 124
Eric Walter, Isabelle Braems, Luc Jaulin, Michel Kueffer

Interval Algorithms in Modeling of Multibody Systems ................ 132
Ekaterina Auer, Andrés Kecskeméthy, Martin Tindl,
Holger Traczinski

Reliable Distance and Intersection Computation Using Finite
Precision Geometry .............. ... .. 160
Katja Biihler, Eva Dyllong, Wolfram Luther

On Singular Interval Systems ..................... .. ... ... ... . ... . .. 191
Gotz Alefeld, Ginter Mayer



X Table of Contents

Applications in Science and Engineering

Result-Verifying Solution of Nonlinear Systems in the Analysis

of Chemical ProCeSSeS . ..ottt e 198
Thomas Beelitz, Christian Bischof, Bruno Lang,
Klaus Schulte Althoff

Verified Numerical Analysis of the Performance of Switching
Systems in Telecommunication........... ... ... .. ... ... ... ... .... 206
Daniela Fausten, Gerhard Hafllinger

Result Verification for Computational Problems in Geodesy ............ 226
Stefan Borovac, Gerhard Heindl

Global Optimization in the COCONUT Project....................... 243
Hermann Schichl

An Application of Wavelet Theory to Early Breast Cancer ............. 250
Baya Oussena, Abderrezak Henni, René Alt

Novel Approaches to Verification

Using PVS to Validate the Inverse Trigonometric Functions of an
Exact Arithmetic ......... ... . . 259
David Lester

Novel Approaches to Numerical Software with Result Verification ....... 274
Laurent Granvilliers, Vladik Kreinovich, Norbert Miller

Static Analysis-Based Validation of Floating-Point Computations ... .... 306
Sylvie Putot, Eric Goubault, Matthieu Martel

Author Index ........ ... . . 315



OOP and Interval Arithmetic —
Language Support and Libraries

Jurgen Wolff von Gudenberg

Universitat Wiirzburg
97074 Wiirzburg, Germany
wolff@informatik.uni-wuerzburg.de

Abstract. After a short presentation of the paradigms of object ori-
ented programming and interval arithmetic the languages C++ and Java
are treated in more detail. Language features are regarded with respect
to their support for the definition or application of interval arithmetic.

In the final section the 4 libraries Profil/BIAS, C-XSC, filib++ as well as
Sun Forte C++ are compared with respect to functionality and efficiency.

1 Paradigms

1.1 Object Oriented Programming

An object oriented program simulates a part of the real or an imaginary world.
Objects are constructed and communicate with each other via messages. Classes
are defined to describe objects of the same kind. The class is the central and most
important construct of object oriented programming languages. A class defines
a type by giving attributes to describe a data structure and methods to specify
the behavior of objects of that type. Using encapsulation details of the structure
and implementation may be hidden, a class hence defines an abstract data type.
Separation of interface and implementation is a commonly used pattern as well
as hiding details of the representation or internal execution of the methods.
Objects are instances of classes in the sense of data types, they have attributes
determining their state and thus are elements of the domain. Objects control
their own state, a method call usually stimulates an object to report or change
its state. The standard data types like integers or floating-point numbers are
available as primitive types, the elements are just values, not objects.

Object oriented languages usually provide several forms of polymorphism.
Operator or function overloading, parameterized data types or inheritance are
the main kinds of polymorphism. Templates parameterized by a data type may
be instantiated to create a new data type. Homogeneous lists or matrices are a
typical example. Inheritance based hierarchical programming, in particular, is
often used as synonym for object oriented programming. It allows for the def-
inition of containers with very general element types that then also can host
specializations or derived types. Iterators are provided to pass through the con-
tainer structure.

R. Alt et al. (Eds.): Num. Software with Result Verification, LNCS 2991, pp. 1-14, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 J. Wolff von Gudenberg

Hierarchies of data types may be built where, usually, interfaces or abstract
classes are near the root and their descendants, implementations or specializa-
tions follow towards the leaves. In contrast to these general structures arrays
nearly play any role. Interfaces — explicitly known in Java and implemented as
fully abstract classes in C++ — are used to define an abstract data type. An
interface provides the signatures of methods of implementing classes. Common
behavior for all descendants may be predefined in an abstract class by a call of
abstract methods.

Given abstract add and negate methods of a class Fp, e.g., the subtract
method can be defined for all descendants as

Fp subtract(Fp b) { return add(b.negate()) %

1.2 Interval Arithmetic

The main concern of interval arithmetic is to compute reliable bounds. The
arithmetic interval operations, therefore, use directed rounding, interval versions
of elementary functions and lattice or set operations are provided. Since many
algorithms in scientific computing are not only declared for scalars, interval
vectors and matrices are very important.

The most prominent applications of interval arithmetic are the global opti-
mization [4,2] and the result verification using fixed point theorems [7,3].

Computation of the range of a function is one of the key problems in inter-
val arithmetic. We will use it to investigate the degree of support of interval
arithmetic by object oriented languages. There are many different algorithms to
enclose the range. Surprisingly enough, even the most simplistic approach can
be defined with two possible flavors of semantics, and no decision for one or the
other seems to be convincing.

Interval Evaluation
f(x) = {f(z)|z € x} denotes the range of values of the function f : Dy C R — R
over the interval x C Dy.

An enclosure of the range can be implemented by interval evaluation of the
formula expression for f.

Definition 1 The interval evaluation f : IR — IR of f is defined as the
function that is obtained by replacing every occurrence of the variable x by the
interval variable x and by replacing every operator by its interval arithmetic
counterpart and every elementary function by its range.

We call this mode the normal or interval mode. Note that arithmetic opera-
tors and elementary functions are defined on their natural domain and produce
an error, if the argument contains a point that is not in the domain. Hence, this
definition only holds, if all operations are executable without exception.

Containment Evaluation
Alternatively in the containment or extended mode a range enclosure computes
the topological closure over R* = RU {—o0} U {00} by extending the domain
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of real arithmetic operators to R* and that of elementary functions to their
topological closure, see [8]. No errors are invoked, but the resulting interval may
be R* or (). In the following definition & denotes the power set.

Definition 2 Let f: Dy C R — R, then the containment set f* : PR* — QR*
defined by

f*(x) = {f(z)|lz € xN Df} U {limp,502- f(x)|z* € x} CR*

denotes the extended range of f.

Definition 3 The containment evaluation f* : IR* — IR" of f is defined as
the function that is obtained by replacing every occurrence of the variable x by
the interval variable x and by replacing every operator or function by its extended
interval arithmetic counterpart.

Theorem 1.

f(x) C f(x) (1)
f(x) € fr(x) € £7(x) (2)

The proof of (1) is well known, a similar step by step proof for (2) is carried
out in [8].

Discussion
Since arithmetic operations as well as the elementary functions are continuous
over their domain and since this continuity is lost by the extended operations,
only the interval mode should be used, if continuity is a presupposition as for
example in result verification algorithms [3] using Brouwer’s fixed-point theorem.
In the containment mode additional constraints have to be added to ensure
continuity.

The normal mode, however, may be too restrictive in global optimization [2].
Here it is correct to intersect argument interval and domain in order to obtain
a feasable set.

2 Requirements and Realisations

In this section we enumerate the requirements which are necessary, recom-
mended, helpful, or at least nice to embed interval arithmetic in the object
oriented languages C++ and Java.

2.1 Requirements for Interval Arithmetic

— A data type interval can be defined. (mandatory)

— Vectors and matrices are available. (mandatory)

— Floating-point arithmetic is clearly specified. (mandatory)
Directed rounding is provided. (recommended)

Intervals can be read and written. (mandatory)
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— Interval literals are accessible. (helpful)

— Operators and functions can be overloaded. (recommended)

— Functions may be passed as parameters. (recommended)

— Evaluation of expressions may be redefined by the user. (helpful)
— Data types can be parameterized. (helpful)

Every programming language of interest supports the definition of data types,
vectors and matrices.

Floating-point arithmetic is available in hardware. For the definition of inter-
val arithmetic a clear specification of the performable operations, their accuracy
and rounding mode is mandatory.

Even if we can assume that IEEE arithmetic is provided on every computer,
we can not be sure that directed roundings are immediately accessible. Therefore
we consider 7 different rounding procedures. V denotes the function that maps
a real number to its greatest lower floating-point neighbour, A to the least
upper, and () to the nearest floating-point neighbour. Usually the hardware
rounding mode has to be switched explicitly. This switching may be an expensive
operation.

For the operation [2,Z] = [z, 7] + [y,7] the rounding procedures are

— native: set Viz = V(z +y); set A;Z = AT +7)

— native-switch : set V;z = V(z +y), set A;Z = A(T +7); set O

— native-onesided : set V;z = V(z +y);z = V(-V(-%Z — y))

— native-onesided-switch: set V;z = V(z + y);Z = V(=V(=Z — 7)); set O
— no switch: z=V(z+y); 2= AT +7)

— multiplicative: z = (z + y) * pred(1.0); Z = (T + 7) * succ(1.0)

— pred-succ: z = pred(z —1—@); Z = succ(T + 7)

The first 4 procedures expect that directed rounding is available in hardware
and can be selected via a switch, the onesided roundings need only one switch. If
the switch back to round to nearest is omitted, the semantics of the floating-point
arithmetic, that usually works with round to nearest, is changed.

The no-switch rounding procedure assumes that all 3 rounding modes are
immediately accessible. Multiplicative rounding may be applied, if only round
to nearest is provided by the hardware. The predecessor and successor of a
floating-point number may be obtained by a hardware instruction or by bit
manipulation.

Input and output as well as interval literals may be realized by an interval+<s
string conversion.

For the realisation of algorithms like interval Newton method or range eval-
uation it is strongly recommended that functions may be passed as parameters.
The definition of a particular non-standard evaluation of expressions is a further
helpful ingredient (see # expressions in Pascal-XSC ([5]).

2.2 Realisation in Java

Java is one of the very few languages that specify the semantics of their floating-
point arithmetic. There are even two modes to use IEEE arithmetic. In the
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strictfp mode every intermediate result occuring in an evaluation of an ex-
pression has to be rounded to the nearest number of the corresponding primitive
data type double or float, hence the same result is obtained on any computer.
In the default mode, however, registers with a more precise floating-point for-
mat may be used as well as combined operations like the fused multiply and add
operation. Exceptions for the IEEE traps overflow or division by zero, e.g., are
never raised in any of the two modes.

Directed roundings have to be accessed by native, i.e. non-Java, methods.
Those methods can be defined in a utility class FPU.

public final class FPU {
public static final native double addDown (double x, double y);
public static final native double mulUp(double x, double y);

Since there are no global functions in Java these utility classes are really
necessary. The standard class Math provides the elementary functions.
An interval class may be defined as follows

public class Interval {
// Constructor
public Interval(double x, double y) {
inf =x<y ?x:y;
sup = x>y ?x :Yy;

}

// Access and Utility methods
public double getInf() {
return inf;

}

public double diam() {
return FPU.subUp(sup, inf);

}

//

// updating Arithmetic methods

public Interval sub(Interval other) {
double tmp = other.inf;
inf = FPU.subDown(inf, other.sup);
sup = FPU.subUp(sup, tmp);
return this;



