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To Louise, Benjy, and Alice

“. .. and [we ought] always to search for
that which is eternal amidst the random,
everyday events.”

Martin Kindder



Preface

This text is designed for a one-semester or two-quarter course in probability theory
and applications. Calculus through the techniques of integration is required for
the first seven chapters. Chapter 8 requires knowledge of multiple integrals.
Although matrix multiplication is used in Chapter 12, Appendix 2 explains the
necessary material. In addition, numerous programs are included. These are in
a simplified Pascal and only a slight exposure to programming is required.

There is much that is aesthetic in probability. Like any mathematical subject
there is an “‘elegance” that endows the reasoning and the manipulations of symbols
with a sense of logical completeness and simplicity. But there is a sense of magic
when abstract mathematics is seen to apply validly to the “real world.” To convey
the intuition of the subject has been paramount in writing this book: how reasonable
assumptions can be used to formulate a mathematical model which then has ap-
plications to the myriad phenomena surrounding us. One does not have to look
far to see randomness and chance events. They are everywhere: in the pattern
of raindrops, arrival of buses, shapes of natural objects, and so on.

Since probability is an applied subject, I have taken care to include compu-
tational ideas. A simplified version of Pascal is used to express algorithms. These
are of two types: for calculations of formulas and (beginning with Chapter 7)
simulations of random models. Not only is computation necessary in any specific
application of probability, but the algorithmic approach provides another means
by which we can gain insight into how a model works.
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With the exception of Chapter 7, the first ten chapters form the core of a first
course in probability. Chapter 7 on simulations can be covered as a single unit
or section by section as the topics arise in the earlier chapters; for example, random
number generators can be one of the first topics during the first week.

It will not be possible in one semester to cover all the material in Chapters
11 and 12. Neither of these chapters is a prerequisite for the other and can be
covered independently. Chapter 11 shows how to solve for the steady state in a
birth and death process in continuous time; queues are featured. Chapter 12 is
the only one to require matrix multiplication; it covers Markov chains in discrete
time.

Throughout the text there are optional sections which contain material at a
deeper level of sophistication. If several of these are deleted, a semester course
should be able to cover the first ten chapters and at least one of Chapters 11 and
12.

I have tried to convey a sense of the openness of the subject. With simulations
particularly, probability affords opportunities for projects and independent work.

I would like to thank Jean Hunter and David Ostrow of Prentice-Hall for their
editorial guidance, the reviewers, Professor Galen R. Shorack, the University of
Washington, Professor Franklin Sheehan, San Francisco State University, and Pro-
fessor Donald E. Myers, the University of Arizona, for their excellent suggestions,
my family for its patience, and Monique Brion-Escher, Peter Brooks, Jason Choi,
Clare Detko, Karl Dushin, Robert Koff, Susan Schroeder, William Widulski, and
Robert Drummond—students who made very fine contributions to the quality of
the text.

Purchase, New York Frederick Solomon
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The loser, when the game at dice breaks up,
lingers despondent, and repeats the throws to learn,
in grief, what made his fortune droop.

Dante, 1265-1321, The Divine Comedy

— Chapter O

Introduction

Quite naturally we look for relationships and patterns among the variable features
in the world around us: We attempt to devise abstract models. This means that
amidst the infinity of detail in any actual situation we try to strip away the inessential
and isolate those variables that are most important to the questions in which we
are interested. We do this model building for two reasons: first, for the practicality
of it; in applying an abstract model that accurately mirrors an aspect of reality, we
are better able to control events; and second, even if a model leads to no practical
consequence, understanding the model leads to a sense of insight which is felt to
be valuable in its own right.

A mathematical model is one in which the variables and the relationships
among them are mathematical. This means that they have a high degree of logical
structure: The variables are all numerical or possibly geometric in nature.

It is an oversimplification to say that mathematical model building consists
in the observation of variables, the derivation of formulas, and finally the checking
of the model’s predictions with reality. Rather, the model proceeds through several
versions; the checking operation might suggest new variables that are relevant; the
derivation of mathematical formulas might suggest new ways in which the model
can be checked. The process finally stops when the model is “‘good enough” for
the purpose to which it was intended or one runs out of time or further refinements
are too complicated. But the point is that only in the very simplest situations are
mathematical models completely successful. There is almost always the possibility
of further revision and refinement.



A random model is one in which chance and randomness play a significant
role. For example, a mathematical model for the amount of traffic on a certain
highway cannot possibly assume that all the relevant variables are known; this
would imply knowing whether each car in the entire city is on the highway. Nor
is such detailed knowledge necessary. Rather, a model would make reasonable
assumptions and predict the traffic up to likelihoods or various degrees of certainty.
How to devise random models, how to interpret them, and how to use them are
what this book is about.

Probability deals with the formulation of random models, the derivations of
formulas, and the predictions based on them. Mathematical statistics deals with
analyzing and revising the model in the light of actual data. For example, a
question for probability is: “Given that 40 out of 100 people favor proposition A,
what is the likelihood that among 10 people interviewed at random fewer than 3
will be in favor?” A corresponding question for statistics is: “Among 10 people
interviewed, 3 favored proposition A. Given this, what conclusions can be drawn
about the popularity of the proposition among the total population?”

Games of chance are millenia old. Heel bones of hooved animals which
have four roughly symmetrical faces were used for the “dice.” An Egyptian board
game using such a bone dates to 1800 B.c. The casting of lots and other random-
izing procedures were common. In the biblical story of Jonah such a device was
used to determine that Jonah was responsible for the storm at sea. But there was
never more than the most elementary mathematics applied.

As with many other mathematical and scientific fields, the origins of prob-
ability lie in sixteenth-century late renaissance. Although the first problems con-
cerned odds in gambling, it is wrong to suppose that the need to solve such problems
was behind the development of probabilistic methods. Rather, at this time there
was a new spirit in the air—a sense of objectivity, an interest in applying logic to
phenomena in the natural world, and a faith in our ability to discover scientific-
type laws. Gambling games provided the occasion for the application of mathe-
matics.

In this treatise I had in mind foremost the enjoyment of the mathematicians and not
the advantages of the players; it is our opinion that those who waste time on games
fully deserve to lose their money as well.

Pierre-Remond de Montmort, 1713

In the mid-eighteenth century probability was applied to areas other than
gambling—first to demography (mortality, census tables, and population studies),
then to physics, and theories of random errors of measurement. Presently, all
scientific disciplines use methods developed in this text. Precisely because the
applications are so varied, the subject itself must be abstract. If a queueing model
applies to a waiting line at a telephone booth as well as cars waiting at a car wash
as well as toys on a shelf “waiting” to be sold as well as radioactive atoms “waiting”’
to disintegrate as well as playing cards “waiting” to be dealt, . . . , then the model
must use an abstract symbolism stripped of specific connotations.

2 Introduction Chap. 0



Randomness alone can never produce a significant pattern,
for it consists in the absence of any such pattern.

M. Polanyi, Personal Knowledge: Towards a Post-
Critical Philosophy. Copyright © 1974. The Univ. of
Chicago Press. Reprinted by permission of the publisher.

— Chapter 1

The Language and Axioms
of Probability

1.1 WHAT IS RANDOMNESS?

In experience there are unpredictable, inexplicable features; the weather is un-
predictable, so we say that it is due to randomness as though randomness were a
“thing,” something to be invoked for lack of a better explanation—for lack of any
explanation, in fact. A coin is flipped. Will it land heads or will it land tails?
If the exact force of the thumb on the coin were known and the exact position of
the fingers and the exact air currents and the exact composition of the table, then
one might be able to predict how the coin would land. But these things are not
known and to measure them with the required degree of accuracy might well be
impossible even in theory. So the lack of an explanation for why the coin landed
as it did is summarized by the words “randomness” and ‘‘chance.”

Around the year 1900 the world was felt to be deterministic, by and large.
Randomness was an “‘epiphenomenon”—a category that we used to describe the
world due to our ignorance, but not an essential aspect of the world as it actually
is.

If a minute case which escapes our notice determines a considerable effect which we
cannot miss, then we say that this effect is due to chance. If we had an exact knowledge
of the laws of nature and the position of the universe at the initial moment, we could
predict exactly the position of that same universe in a succeeding moment.

Henri Poincaré, 1912



