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PREFACE

This special volume contains the Proceedings of the 9th Epioptics Work-
shop, held in the Ettore Majorana Foundation and Centre for Scientific
Culture, Erice, Sicily, from July 20 to 26, 2006. The Workshop was the
9th in the Epioptics series and the 39th of the International School of Solid
State Physics. Antonio Cricenti from CNR Istituto di Struttura della Ma-
teria and Theo Rasing from the University of Njimegen, were the Directors
of the Workshop. The Advisory Committee of the Workshop included Y.
Borensztein from U. Paris VII (F), R. Del Sole from U. Roma II Tor Ver-
gata (I), D. Aspnes from NCSU (USA), O. Hunderi from U. Trondheim
(N), J. McGilp from Trinity College Dublin (Eire), W. Richter from TU
Berlin (D), N. Tolk from Vanderbilt University (USA), and P. Weightman
from University Liverpool (UK). Fifty five scientists from sixteen countries
attended the Workshop.

The Workshop has brought together researchers from universities and
research institutes who work in the fields of (semiconductor) surface sci-
ence, epitaxial growth, materials deposition and optical diagnostics rele-
vant to (semiconductor) materials and structures of interest for present
and anticipated (spin) electronic devices. The Workshop was aimed at as-
sessing the capabilities of state-of-the-art optical techniques in elucidating
the fundamental electronic and structural properties of semiconductor and
metal surfaces, interfaces, thin layers, and layer structures, and assessing
the usefulness of these techniques for optimization of high quality multilayer
samples through feedback control during materials growth and processing.
Particular emphasis is dedicated to theory of non-linear optics and to dy-
namical processes through the use of pump-probe techniques together with
the search for new optical sources. Some new applications of Scanning
Probe Microscopy to material science and biological samples, dried and in
vivo, with the use of different laser sources have also been presented. Mate-
rials of particular interest have been silicon, semiconductor-metal interfaces,
semiconductor and magnetic multi-layers and III-V compound semiconduc-
tors. The Workshop is characterized by the adequate collection of notes in
this volume, combined with the tutorials in some of the most advanced
topics in the field.



vi

This book is dedicated to Professor Gianfranco Chiarotti for his funda-
mental contributions to the development of Optical Spectroscopy as a tool
to study Surface States: these studies have paved the way to the establish-
ment of our Epioptics Community. During the School Prof. Chiarotti has
been awarded the diploma of Father of Epioptics School, for the lecture
regarding his contribution to the discovery of “Optical transition between
semiconductor surface states”. Prof. Giorgio Benedek was also awarded
in the occasion of his 65th birthday for his strong and successful effort in
running the International School of Solid State Physics.

I want personally to thank Prof. Chiarotti for giving me the opportunity
to start this wonderful trip in science and as an example of rigour and
dedication in the endeavour of scientific research. It is sad to remember
that during the editing of these Proceedings two of our colleagues passed
away: Dr. Marco Fabio Righini, who started his research at CNR in our
optical group becoming an excellent scientist and with whom I shared the
optical set-up for several years, and Prof. Carlo Coluzza, who was a very
intuitive scientist in many different fields of science and a very good friend.
I want also to remember my father-in-law Benito Cello, who had been very
special to me, and my father Domenico, who also passed away recently: he
was an untiring worker all his life, who has been exemplary and has been
a great resource for me.

I wish to thank our sponsors, the Italian National Research Council
(CNR) and the Sicilian Regional Government for facilitating a most suc-
cessful Workshop. We wish to thank Prof. A. Zichichi, the President of the
Ettore Majorana Foundation and Director of the Ettore Majorana Centre
for Scientific Culture in Erice, and all the staff members of the Centre for
the excellent support, organization and hospitality provided.

Antonio Cricent:
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LONGITUDINAL GAUGE THEORY OF SURFACE SECOND
HARMONIC GENERATION

BERNARDO S. MENDOZA

Centro de Investigaciones en Optica
Ledn, Guanajuato, Mézico
bms@cio.mz

A theoretical review of surface second harmonic generation from semiconductor
surfaces based on the longitudinal gauge is presented. The so called, layer-by-layer
analysis is carefully presented in order to show how a surface calculation of second
harmonic generation (SHG) can readily be carried out. The nonlinear susceptibility
tensor % is split into two terms, one that is related to inter-band one-electron
transitions, and the other is related to intra-band one-electron transitions. The
equivalence of this formulation to the transverse gauge approach is shown and the
possibility of confirming its numerical accuracy is discussed. Also, the calculation
of the surface second harmonic radiated intensity R within the three-layer-model
is derived. With xx and R one has a complete description of this fascinating optical
phenomena.

1. Introduction

Second harmonic generation (SHG) has become a powerful spectroscopic
tool to study optical properties of surfaces and interfaces since it has the ad-
vantage of being surface sensitive. For centrosymmetric materials inversion
symmetry forbids, within the dipole approximation, SHG from the bulk,
but it is allowed at the surface, where the inversion symmetry is broken.
Therefore, SHG should necessarily come from a localized surface region.
SHG allows to study the structural atomic arrangement and phase tran-
sitions of clean and adsorbate covered surfaces, and since it is an optical
probe, it can be used out of UHV conditions, and is non-invasive and non-
destructive. On the experimental side, the new tunable high intensity laser
systems have made SHG spectroscopy readily accessible and applicable to
a wide range of systems.! However, the theoretical development of the field
is still an ongoing subject of research. Some recent advances for the case of
semiconducting and metallic systems have appeared in the literature, where
the confrontation of theoretical models with experiment has yield correct
physical interpretations for the SHG spectra. 13345678



In a previous article,’ we reviewed some of the recent results in the
study of SHG using the transverse gauge for the coupling between the elec-
tromagnetic field and the electron. In particular, we showed a method to
systematically investigate the different contributions to the observed peaks
in SHG.!? The approach consisted in the separation of the different contri-
butions to the nonlinear susceptibility according to 1w and 2w transitions
and to the surface or bulk character of the states among which the tran-
sitions take place. To complement above results, on this article we review
the calculation of the nonlinear susceptibility using the longitudinal gauge,
and show that both gauges give, as they should, the same result. We dis-
cuss a possible numerical check up on this equivalency. Also, the so called
three-layer-model for the calculation of the surface radiated SH efficiency
is presented.

2. Longitudinal Gauge

To calculate the optical properties of a given system within the longitudinal
gauge, we follow the article by Aversa and Sipe.!! A more recent derivation
can also be found in Ref. !? and 3. Assuming the long-wavelength approxi-
mation, which implies a position independent electric field, the hamiltonian
in the so called length gauge approximation is given by

H=Hy—efE, (1)

where Hy = p?/2m + V/(r), where V(r) = V(r + R) is the periodic crystal
potential, with R the real-space lattice vector. The electric field E = —A /c,
with A the vector potential. Hy has eigenvalues fuv, (k) and eigenvectors
[nk) (Bloch states) labeled by a band index n and crystal momentum k.
The r representation of the Bloch states is given by

nilz) = (elk) = 1/ 5™ (1), )

where unk(r) = unk(r + R) is cell periodic, and

/ B U (O)timq () = Srmbica 3)
Q

with € the volume of the unit cell.
The key ingredient in the calculation are the matrix elements of the
position operator r, so we start from the basic relation

(nk|mk') = Snmd(k — k'), (4)



and take its derivative with respect to k as follows. On one hand,

9 N _ 9 ,

o (mlm) = G -6k — ), (5)
on the other,

3(nk|mk’) = ail(/dr(nkh)(r[mk’)

ok
= [ (v vme®) ©)
- ak nk 'mk/\T),
the derivative of the wavefunction is simply given by
a . ] a 0 . _ikr s
Vtn) =/ gom (puan(e) ) e = iria(o) ™

We take this back into Eq. 6, to obtain

0 Q 0 ;
ki) = /<2 [ dr (ui(e) ) e @)
—i/drw;k(r)rwmk:(r)
= 8—23— /dr g~ ie-k)r (aiku;k(r)) Ui (T)
—i(nk|t|mk’). (8)

Restricting k and k’ to the first Brillouin zone, we use the following valid
result for any periodic function f(r) = f(r + R) (see Appendix A),

3
[ #retanpe) = Fsa - [ dr e, (9)
Q
to finally write,'4
—a—(nklmk') = §(k — k’)/ dr —a—u' (r) | umk(r)
ok o "Bk ™
—i(nk|F|mk’). (10)
where  is the volume of the unit cell. From

/ UmkUnidr = 6nm, (11)
Q

we easily find that

[t (g wia) = = [ dr ) (@) (2



Therefore, we define

Enm(k) = z"/ndru,";k(r)vkumk(r), (13)

with 0/0k = V. Now, from Egs. 5, 8, and 13, we have that the matrix
elements of the position operator of the electron are given by

(nk|E|mk’) = §(k — K)&nm(K) + i6nm Vid(k — k'), (14)

Then, from Eq. (14), and writing ¢ = ¥, + ¥;, with f¢ (f;) the interband
(intraband) part, we obtain that

(nK|#:|mk’) = pm [6(k — K)énn (k) + iVid(k — k'], (15)
(nk|fe|mk') = (1 — Snm)(k — K )nm (k). (16)

To proceed, we relate Eq. 16 to the matrix elements of the momentum
operator as follows. We start from the basic relation,

. 1. a
v = —I¢, Hol, (17)

with ¥ the velocity operator. Neglecting nonlocal potentials in Hy we ob-
tain, on one hand

s #pr _ipD
[f, Ho] = zhm, (18)

with p the momentum operator, with m the mass of the electron. On the
other hand,

(k| [£, Bo)lmk) = (k| Ho— Hof|mk) = (huwm (k) — heon (K)) (k| k) ,(19)
thus defining wpmk = wn (k) — wm (k) we get

rnm(k)_ pnm(k) _ Vnm(k)

= ()~ ol T ™ i

Comparing above result with Eq. 16, we can identify
(1 = dnm)énm = rnm, (21)

and the we can write

Pnm (k)
imwnm (k)

(nk|fe|mk) = rpm(k) = n#m, (22)

which gives the interband matrix elements of the position operator in terms
of the matrix elements of the well defined momentum operator.



For the intraband part, we derive the following general result,
(nk|[E:, Oljmk') = Y ((nk|f~,~|£k”)(Zk”l@lmk’)
£,k

—(nk|c§|ek")(ek"|f,-|mk'))
= ((nkl|k')Opm (k')
I3
—One(k)| k) (€k|F;|mk')) (23)

where we have taken (nk|O|fk”) = d(k — k”)One(k). We substitute Eq. 15,
to obtain

> (Bne[8(k — K)énn (k) + iVid(k — k')] Ogm(K')
14
~One(K)8em [6(k — K')mm (k) + i Vied(k — K)])
= ([6(k — K')&nn (k) +iVid(k — K')] Onm (k')
— Onm (k) [5(k - kl)ﬁmm (k) + in5(k - kl)])
= 8(k — K')Opm (k) (€nn (k) — €mm (k) + iOnm(K') Vid(k — K)
+30(k — K )VikOnm (k) — iOnm (k') Vid(k — k')

= id(k — k') (vkonm (k) = iOnm (k) (§nn (k) — &mm(k)) )

= i6(k — K')(Onm) k- (24)
Then,
(nk|[£;, O)|/mk’) = i6(k — K')(Onm):k» (25)
with
(Onm):k = VkOnm(k) — iOnm(k) (énn(k) — Emm(Kk)), (26)

the generalized derivative of Oy, with respect to k. Note that the highly
singular term Vié(k — k') cancels in Eq. 24, thus giving a well defined
commutator of the intraband position operator with an arbitrary operator
O. We use Eq. 22 and 25 in the next section.

3. Time-dependent Perturbation Theory

We use, in the independent particle approximation, the electron density
operator p to obtain, the expectation value of any observable O as

O = Tr(0p) = Tr(p0), (27)



where T'r is the trace, that as we have shown has the property of being
invariant under cyclic permutations. The dynamical equation of motion for
p is given by

.. dp P
zhE = [H, p), (28)

where it is more convenient to work in the interaction picture, for which
we transform all the operators according to

O; =UOUt, (29)
where
U = eiflot/h (30)

is the unitary operator that take us to the interaction picture. Note that
O depends on time even if O does not. Then, we transform Eq. 28 into

mﬁiﬁd’T(t) = [—ef1(t) - E(t), p1(t)], (31)

that leads to
. t
. . ie . . i
p1(t) = p1(t = —o0) + 7‘[/ at'[tr(t') - E(t'), pr(t")). (32)
—o0
We assume that the interaction is switched-on adiabatically, and choose a
time-periodic perturbing field, to write
E(t) = Ee~ ™, (33)

where 7 > 0 assures that at ¢ = —oo the interaction is zero and has its full
strength, E, at ¢ = 0. After the required time integrals are done, one takes
n — 0. Instead of Eq. 33 we use

E(t) = Ee™ !, (34)
with
O =w+n. (35)

Also, pr(t = —oo) should be independent of time, and thus [f[, Ple=—c0 =0,
which implies that g;(t = —00) = p(t = —00) = po, where pg is the density
matrix of the unperturbed ground state, such that

(nk|polmK’) = fr(hwn(k))0nmd(k — k'), (36)
where f,(hwn(k)) = fnk is the Fermi-Dirac distribution function.

We solve Eq. 32 using the standard iterative solution, for which we write

& ~(0 A(1 ~(2
pr=p0+ 50 + 57+, (37)



where ﬁﬁN) is the density operator to order N in E(t). Then, Eq. 32 reads

. t
A , A A 1€ - «
PP+ = pot / a1 (¢)-E(t'), o7 +5{+p(7 + - 1,(38)
—00

where by equating equal orders in the perturbation, we find

PP = po, (39)

and
A = / at'1(¢) - E(), N0 ()] (40)

It is simple to show that matrix elements of Eq. (40) satisfy
(nk|pf¥ D (t)lmK') = p{Nr D (K)8(k — K'), with

N+1 ie A(N
A =58 [ ataen), 60N - BE). (a1
Now we work out the commutator of Eq. 41. Then,
(nk|[i1(2), A" ()] fmk) = (nk|[TE0T, UpM) (£)01]jmk)
= (nk|U[£, p"™)(£)]U |mk) (42)
= etnmet (ke 4N (B) + [Fir A (B)]ImK) )
where the time dependence of operator’s interaction picture is explicitly
shown by the exponential factor, and the implicit dependence of PN in-

herited from Eq. 28 is shown by its t argument. We calculate the interband
term first, so using Eq. 22 we obtain

(nkl(fe, A (©))lmk) = 3 (ki |ek) (€k|5™) (8)|mk)
14

— (k] P (£) ) (LK k) )
= 3 (rnepliy) (58) = oL s )rem ()

£#n,m
=RM(k;t). (43)

Now, from Eq. 25 we simply obtain,
k|, 5 (D)]Imik) = i(o{N) (0)) e = RE™ (s t). (44)
Then Eq. 41 becomes,

(N+D) (1 ) = 2 / dt! i (@nmi—=@)t [Rb(N>(kt)+R”<N)(k t)} E®, (45)

Inm



where, the roman superindices a, b, ¢ denote Cartesian components that are
summed over if repeated. We start with the linear response, then from
Eq. 36 and 43,2

RO (t) = (rho(k)pfon (k) — o5 ()78 (K))
/4

= (rhe(K)dem fom (Fiwm (K)) — Sne f(Fwn (K))rb,, (k)
/4

= frnkTm (K); (46)
where fnk = fmk — fnk. Also, from Eq. 44 and Eq. 26
Rg(O) (k) = z(p(O) ) kb = 10nm(frk) ke = 0nm Vs frk- (47)

For a semiconductor at T' = 0, frk is one if the state |nk) is a valence state

and zero if it is a conduction state, thus Vy foix = 0 and RI(-O) = 0. Therefore

the linear response has no contribution from intraband transitions. Then,
t

e -
p(flzlm(k; t) = Efmnkrgm(k)Eb/ dtl W(wnmi—@)t'

—00
H(wnmk—@)t

€
= _fmnkrnm(k)Eb—~
Wnmk —

_ ezwnmktBb ( )Eb(t)
= gtwnmit p() (- 1), (48)
We generalize this result since we need it for the non-linear response. In

general we could have several perturbing fields with different frequencies,
i.e. E(t) = E,_ e "=t then

Pl (ki t) = Bl (k,wa) ED_e'at, (49)
with
€ fmnkrnm(k)

h Wnmk — Wa

Bbm(k’wa) = (50)

Now, we calculate the second-order response. Then, from Eq. 43
R0t =3 (rhe )b (i 8) = o5 (st (K))
= Z rhe(K) B (,w) = Bro(k, wp)rhm (k) ES, (), (51)

and from Eq. 44
RV (k;t) = i(p (1)) = iBS, (t)(BEm (K, wp))spo- (52)

2from now on, it should be clear that the matrix elements of rp;, imply n # m.



Using Eqgs. 51 and 52 in Eq. (45), and generalizing to two different
perturbing fields, we obtain

P2hni60) = 5| 3 (1200 Bim(k,w9) — Biellsoa)rtm()
I3

t
+Z(B:1m (kv wﬂ));kb] Eza E:’B / dt'e"(“’nmk"oa —ag)t’
—o0

€ & "

= £ | 5 (9B 00) = Bl wahrt (i)
(4

ei(wnmk_‘:’:!)t

((BS. (k x| E® ES
+Z( nm( ’wﬁ)),k"] wo ~wg wnmk_d)3

= etnmit o0 (k; t). (53)
Now, we write p,(fr)n(k;t) = pff%(k; w3)e”@st with
P2 (k;w3) = e 1 | (B, (k,wg).x»
B ih Wnmk — W3 nm !

+15 (reBin (k) — Biali wa)ri )| BS, 5, (50
¢

where @3 = @, + @g and E,,, is the amplitude of the perturbing field with
w; for i = a, 3. We use Eq. 54 in section 5.

4. Layered Current Density

In this section, we derive the expressions for the macroscopic current density
of a given layer in the unit cell of the system. The approach we use to study
the surface of a semi-infinite semiconductor crystal is as follows. Instead
of using a semi-infinite system, we replace it by a slab (see Fig. 1). The
slab consists of two surfaces, say the front and the back surface, and in
between these two surfaces the bulk of the system. In general the surface
of a crystal reconstructs as the atoms move to find equilibrium positions.
This is due to the fact that the otherwise balanced forces are disrupted
when the surface atoms do not find any more their bulk partner atoms,
since these, by definition, are absent above (below) the front (back) surface
of the slab. Therefore, to take the reconstruction into account, by surface
we really mean the true surface that consists of the very first relaxed layer
of atoms, and some of the sub-true-surface relaxed atomic layers. Since
the front and the back surfaces of the slab are usually identical, the total
slab is centrosymmetric. This fact (see Sec. 4), will imply x3* = 0, and

abc
thus we must device a way in which this artifact of a centrosymmetric
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Figure 1. We show a sketch of the slab, where the small circles represent the atoms.
See the text for the details.

slab is bypassed in order to have a finite x,. representative of the surface.
Even if the front and back surfaces of the slab are different, thus breaking
the centrosymmetry and therefore giving an overall x3i2° # 0, we need a
procedure to extract the front surface Xﬁb . and the back surface x5, from
the slab non-linear susceptibility x4t

A convenient way to accomplish the separation of the SH signal of either
surface is to introduce the so called “cut function”, S(z), which is usually
taken to be unity over one half of the slab, and zero over the other half. In
this case, S(z) will give the contribution of the side of the slab for which
S(z) = 1. However, we can generalize this simple choice for S(z), by a

top-hat cut function S,(z), that selects a given layer,
Se(2) = O(z — z¢ + A)O(z¢ — 2 + A]), (55)

where © is the Heaviside function. Here, A{ /% is the distance that the ¢-th
layer extends towards the front (f) or back (b) from its 2z, position. Thus
A{ + A} is the thickness of layer ¢ (see Fig. 1).

Now, we show how this “cut function” S;(z) is introduced in the calcu-
lation of x;;. The microscopic current density is given by

i(r,t) = eTr(j(r)p(t)), (56)
where the operator for the electron’s current is
3 1. .

i(r) = 5 (Ve)(r| + [r)(x[¥), (57)

where ¥V is the electron’s velocity operator to be dealt with below, and Tr
denotes the trace. We define /i = |r)(r| and use the cyclic invariance of the



