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PREFACE

In writing a book on the mathematical foundations of the finite element method
for approximating Maxwell’s equations I am well aware that I am on very dan-
gerous ground. In his recent textbook Functional Analysis, Lax [202] says that
“T'wo souls dwell in the bosom of scattering theory. One is mathematical and
handles the unitary equivalence of operators with continuous spectra. The other
is physics . ..”. This quotation seems to me to describe scattering theory remark-
ably well, except that from the point of view of this book we need to substitute
“electrical engineering” for physics. There is currently an enormous effort in the
electrical engineering community to simulate electromagnetic phenomena using
a variety of numerical methods including finite elements, which are the subject
of this book. On the mathematical side there has recently been increased inter-
est in the understanding of the mathematical properties of Maxwell’s equations
relevant to numerical analysis. The purpose of this book is to describe some of
the basic mathematical theory of Maxwell’'s equations as it pertains to finite
element methods, and hence to provide some mathematical underpinnings for
the finite element method in this context. Along the way I shall try to point out
some of the more obvious problems still remaining. Inevitably, such a book can
be criticized on the grounds of being insufficiently mathematical or insufficiently
practical (a more likely criticism), depending on the background of the reader
— which brings us back to Lax’s quotation!

The book is intended to be self-contained from the point of view of finite
element theory. Therefore, there is a detailed discussion of convergence theory
for mixed finite element methods, basic definitions of finite elements, and error
estimates. However, it is much less detailed from the point of view of practical
implementation — for this aspect of the finite element method there are already
excellent sources in the electrical engineering literature including [177,272]. In-
evitably, it is necessary to assume some mathematics background for the book.
Two subjects form the basis of the theory here: functional analysis and Sobolev
space theory. For these topics, the excellent book of McLean [215] covers more
than is necessary for this book. I have not assumed that the reader is familiar
with Sobolev spaces of vector functions. Thus, in Chapter 3, I have summarized
some more or less classical material on these spaces. The main source for this
chapter is the book of Girault and Raviart [143]. This is a lovely book and well
worth reading.

After the preparatory work in Chapters 2 (functional analysis and abstract
error estimates) and 3 (Sobolev spaces and vector function spaces) we move on,
in Chapter 4, to discuss a simple model problem for Maxwell’s equations. This
is a cavity or interior problem, which is posed on a bounded domain, but with
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boundary conditions motivated by scattering applications (as first described in
Chapter 1). This chapter uses the spaces from Chapter 3 to write down and
analyze a standard variational formulation for the cavity problem. The analysis
motivates the function spaces involved and the analytical techniques used to
investigate such a problem.

At this stage we face a decision: what class of domains to allow for the
scatterer. On the one hand, the theory of partial differential equations is much
simplified if the domain has a smooth boundary. But this vastly complicates
the discussion of finite element methods and the effects of the approximation of
smooth boundaries is not well understood for Maxwell’s equations. Therefore,
I have decided to focus my discussion on Lipschitz polyhedra. These allow the
use of standard tetrahedral meshes. In addition, some of the subtle problems
related to approximating Maxwell’'s equations (such as the non-convergence of
standard finite element methods in some cases [105]) appear in this situation.
Finally, some of the most interesting recent advances in finite element theory and
function space theory for Maxwell’s equations has taken place in the context of
Lipschitz polyhedral domains (see, e.g. [63,106,12]).

Using the discussion of Chapter 4 as motivation, we see that some special
finite elements — the edge elements of Nédélec [233] — are particularly well
suited to discretizing the Maxwell system. Therefore, in Chapters 5 and 6 we
present a detailed description of these spaces, together with an associated scalar
space for the electrostatic potential and other spaces needed to complete the
theory. These chapters are a central part of the book and, besides presenting the
original Nédélec finite element spaces, also emphasize some more recent view-
points, including in particular the discrete de Rham diagram which summarizes
the relationships between the relevant function spaces, their finite element dis-
cretizations and interpolation operators.

Having obtained a suitable variational formulation of the cavity problem and
suitable finite element spaces, we then move to the finite element discretization of
the cavity problem in Chapter 7. I present in detail two proofs of convergence for
this method. To date, the first proof can only be applied in a special case, but has
the advantages of simplicity and of providing a very clean result. In addition, this
theory will be used later when we investigate the frequency dependence of the
error in finite element methods in Chapter 13 and when discussing an overlapping
Schwarz method for solving the associated matrix problem. The second proof uses
the theory of collectively compact operators to prove convergence in a rather
general case allowing spatially dependent electromagnetic parameters. Another
proof, due to Hiptmair [164], is not included but a similar technique is used later
in Chapter 10. A fourth proof, due to Boffi and Gastaldi [50], is also not included
since it rests on the theory of eigenvalue problems, which are not an emphasis of
this book (although we do provide some theory in Chapters 4 and 7). The three
chapters, 4, 5 and 7, form the core of the book and could be useful in a graduate
course on finite element methods. Together with some material from Chapter 13
and some from the engineering texts mentioned above, an entire course could be



PREFACE vii

constructed — and indeed this book is partially a result of such a course taught
at the University of Delaware. These chapters contain the principal technical
results used in all analyses of edge elements to date.

A central task of computational electromagnetism is the approximation of
scattering problems. In these problems a known incident field (e.g. from a radar
transmitter) interacts with an object (e.g. an aircraft) to create a scattered field.
The approximation of this scattered field (or the total field) is the goal of the
finite element method. In this book we shall only consider the case of a bounded
scatterer (like an aircraft). This reflects my interests, but of course there are many
very important applications of scattering from unbounded media. Examples in-
clude the classical problem of computing scattering from an infinite periodic
structure (or diffraction grating) [25] or a periodic structure with defects [10].
Although we shall not be handling these problems here, the techniques presented
also appear in the analysis of more complex problems. For example the theory
of Chapter 10 has been used in the analysis of scattering from objects coated
by thin layers [11]. Our presentation of scattering problems starts with classi-
cal scattering by a sphere in Chapter 9, where we derive the famous integral
representation of the solution to Maxwell’s equations called the Stratton—Chu
formula. In addition, we derive classical series representations of the solution
of Maxwell’s equations. These are used in Chapter 10 to derive a semi-discrete
method for the scattering problem utilizing the electromagnetic equivalent of the
Dirichlet to Neumann map. A fully discrete domain-decomposed version of this
algorithm is proposed and analyzed in Chapter 11. The methods in Chapters 10
and 11 have the disadvantage of needing a truncated domain with a spherical
truncation boundary. Obviously, using this method, high aspect ratio scatterers
would require a domain with a large volume and, hence, large computational
cost. Therefore, in Chapter 12 we turn to a coupled integral equation and finite
element method due to Hazard and Lenoir [159] and Cutzach and Hazard [111].
In this method the Stratton—Chu formula is used to represent the solution out-
side the scatterer and simultaneously the finite element method is also used on a
truncated domain extending outside the scatterer. There is thus a region where
both methods represent the solution. It has to be admitted that this overlapping
scheme is not the standard one in widespread use. I prefer this method because
it avoids computing singular integrals and provides the basis for an alternat-
ing Schwarz iterative scheme for solving the problem. Readers interested in the
more standard approach should consult the book of Jin [177] and the paper of
Hiptmair [163].

There are of course many more problems associated with the finite element
discretization of Maxwell’s equations than those discussed in Chapters 7-12. In
particular, the matrix problem resulting from the discretization of the Maxwell
system is indefinite (regardless of the frequency of the radiation). Thus, the solu-
tion of this linear system (which is large and sparse) presents a serious challenge.
Indeed, an efficient solution of this linear system is perhaps the main challenge

currently facing finite clement analysis of scattering problems. We discuss this
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problem in Chapter 13. This chapter also contains shorter discussions of a num-
ber of other practical aspects of the solution of Maxwell’s equations. For example,
we discuss the sensitivity of the error in the calculation to the frequency of the
radiation and explain the need for a “sufficiently fine” grid compared to the
wavelength of the radiation. We also consider a posteriori error estimation and
the extraction of the far field pattern of the scattered wave from a knowledge of
the near field. In addition, we examine the domain truncation problem further
and, in particular, touch on the perfectly matched layer and infinite elements.
These topics are much less well understood from the theoretical point of view
than the error analysis presented earlier in the book.

The final chapter (Chapter 14) of the book hardly fits with the title, but since
inverse problems are my main reason for studying scattering theory I cannot
resist a brief introduction to inverse scattering. Besides its intrinsic interest, the
chapter provides an example of the application of some of the analytical results
derived earlier in the book.

There are a number of books that overlap to a greater or lesser extent with
this work. The electrical engineering books of Jin [177] and Silvester and Fer-
rari [272] provide much more detail on coding finite element methods and, of
course, more details of engineering applications. Thus, they complement my book
rather well, with the book of Jin being most relevant because it focuses on edge
elements. From the point of view of scattering theory in a variational setting, the
book of Cessenat [73] is very useful but does not deal with numerical methods or
(in the main) Lipschitz domains. Similarly, the book of Colton and Kress [94], al-
though a vital source for much of the basic material in this book, uses a function
space setting different from the one used here. In addition, finite element methods
are not tackled. Perhaps closest to this book is the book of the founding father
of this area, Professor Nédélec [236]. However, the emphasis of Nédélec’s book is
different in that he does not focus on finite element methods. Finally, although
not a book, the massive survey article of Hiptmair [164] deserves mention. This
article covers much of the material in Chapters 4 — 7 but at a more sophisticated
level using discrete differential forms. In the same way as the book of Jin com-
plements my book from the point of view of implementation, so does Hiptmair’s
article complement my presentation of finite elements and cavity problems.

Some comment needs to be made about the bibliography and references. |
have roughly 300 references and have tried very hard to reference basic papers in
the field. One area where the references are somewhat scarce is to the practical
engineering literature. This does not represent a lack of enthusiasm for that
literature. In fact, the widespread and successful engineering use of finite element
methods and the need to buttress this success with a theoretical understanding
are the motivations for this book. Since most of the theoretical work on finite
elements has taken place in the mathematics literature, such papers appear in a
disproportionate way in the bibliography.

Inevitably, there is an enormous amount of interesting material left out of this
book. In essence, the contents are a reflection of my own research interests. In



PREFACE ix

my defense, I can only quote Wittgenstein: “Whereof one cannot speak, thereof
one must be silent” [297].

Of course I have tried to rid the book of as many typos as possible. But I am
mindful that some bugs will have escaped detection. I plan to post any typos
reported to me on the web page

http://www.math.udel.edu/ monk/FEBook/index.html.

In addition I will record there any interesting suggestions regarding arguments
in the book (but I reserve the right to define what is “interesting”!).

Thanks are due to many people. My parents and the Falkland Island govern-
ment gave me an excellent school education. My PhD adviser Rick Falk intro-
duced me to finite elements, gave me tremendous encouragement as a graduate
student, and even suggested the University of Delaware for postgraduate employ-
ment. In my professional life I have benefited tremendously from my collabora-
tion and friendship with David Colton, who encouraged me to write this book.
Outside the department, my family, and particularly my wife Ellen, have sup-
ported me and provided a wonderful antidote to depression and self-absorption.
Particular thanks are also due to Pam Irwin, who cheerfully typed much of the
book from my execrable notes, and to David Colton and Fioralba Cakoni who
helped with the manuscript. Last, but by no means least, I would like to thank
Dr Arje Nachman and the Air Force Office of Scientific Research for grant sup-
port which has made my research possible.

Newark P.M.
August 2002
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1

MATHEMATICAL MODELS OF ELECTROMAGNETISM

1.1 Introduction

In 1873 Maxwell founded the modern theory of electromagnetism with the pub-
lication of his Treatise on Electricity and Magnetism, in which he formulated
the equations that now bear his name. These equations consist of two pairs
of coupled partial differential equations relating six fields, two of which model
sources of electromagnetism. It turns out that these equations are not sufficient
to uniquely determine the electromagnetic field and that additional constitutive
equations are needed to model the way in which the fields interact with mat-
ter. There is considerable flexibility in the constitutive equations. Because of
this, we need to carefully state the problems to be analyzed in this book, and
we start this chapter by summarizing the classical Maxwell equations govern-
ing an electromagnetic field in a linear medium. We then reduce this system
to its time-harmonic form by assuming propagation at a single frequency. The
time-harmonic Maxwell system will be the focus of this book. Besides Maxwell’s
equations, it is also necessary to describe appropriate physical boundary condi-
tions. These include radiation conditions that select the outgoing field relevant
to scattering problems.

Once the basic boundary value problem is formulated, it is often expedient
to reduce the full Maxwell system to a simpler system relevant to the physical
problem at hand. For example, it is often reasonable to assume that the elec-
tromagnetic field is time invariant or static. This reduces Maxwell’s equations
to a potential problem. Simpler models can also be derived at long and short
wavelengths. We do not consider any of these reduced models here. We shall
be concerned with approximating the time-harmonic Maxwell system for linear
media in the “resonance region”. By this we mean that the wavelength of the
radiation is commensurate with the dimensions of features of the scatterer.

We end this chapter with a summary of the relevant boundary value problems
from the point of view of this book. Our presentation, at this stage, is purely
formal (we simply assume the existence of appropriate solutions) and follows the
format of standard texts on electromagnetism, such as [274]. Later chapters will
give a careful variational formulation of the equations in this chapter, followed
by finite element methods.

First a word about notation: vectors are distinguished from scalars by the
use of bold typeface (but this convention does not, in general, carry over to
operators). Unless otherwise stated, vectors will all be three dimensional and
either real (in R3) or complex (in C?). For example, € R? denotes position
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in three-space and has components z, x5 and 5 (@ = (x1,22,23)" where T
denotes transpose). For two vectors @ € CV and b € CV we define the dot

product on CV by
N

a- b= Z(.I.jbj.

j=1
The reason for not including complex conjugation in the dot product is that we
will need to write down expressions like v - E, where v is a real vector and E is
complex. In this case we do not want to conjugate E. Later, when we start to
write down variational formulations, it will be important to recall that the dot
product does not have complex conjugation built in. If @ € CN we define the
Euclidean norm of a by |a| = Va @, where @ = (@y,...,ax)" and a; is the
complex conjugate of a;.
As usual in mathematics texts, i = \/—1, and j is just an integer variable.
In our error estimates we shall use a generic constant C' everywhere different.
Apart from this, I have tried to avoid using the same symbol for two quantities
(at least on the same page!).

1.2 Maxwell’s equations

The classical macroscopic electromagnetic field is described by four vector func-
tions of position & € R? and time ¢ € R denoted by &, D, H and B. The funda-
mental field vectors £ and H are called the electric and magnetic field intensities,
respectively (we shall refer to them as the electric field and the magnetic field,
respectively). The vector functions D and B, which will later be eliminated from
the description of the electromagnetic field via suitable constitutive relations,
are called the electric displacement and magnetic induction, respectively.

An electromagnetic field is created by a distribution of sources consisting of
static electric charges and the directed flow of electric charge, which is called
current. The distribution of charges is given by a scalar charge density func-
tion p, while currents are described by the vector current density function J.
Maxwell’s equations then state that the field variables and sources are related
by the following equations which apply throughout the region of space in R3
occupied by the electromagnetic field:

§+VX£:0, (1.1a)
V. -D =p, (1.1b)
%—?—vXu:—Js (1.1c)
V-B=0. (1.1d)

Equation (1.1a) is called Faraday’s law and gives the effect of a changing magnetic
field on the electric field. The divergence condition (1.1b) is Gauss’s law and gives
the effect of the charge density on the electric displacement. The next equation,



MAXWELL’S EQUATIONS 3

(1.1c), is Ampere’s circuital law as modified by Maxwell. Finally, eqn (1.1d)
expresses the fact that the magnetic induction B is solenoidal. A table of SI
units relevant to electromagnetism is given in Table 1.1.

The divergence conditions (1.1b) and (1.1d) are consequences of the funda-
mental field equations, (1.1a) and (1.1c), provided charge is conserved. Formally,
this is shown by taking the divergence of (1.1a) and (1.1c) and recalling that
V- (V x A) =0 for any vector function A. Hence

oB oD

But if charge is conserved, p and J are connected by the relation

dp
V- T+ — 3 =10, (1.2)
and hence
15} 0
&V B = 8t(v D—p)=0.

Thus if (1.1b) and (1.1d) hold at one time, they hold for all time. However,
the fact that (1.1b) and (1.1d) are consequences of (1.1a) and (1.1c¢) for the
continuous electromagnetic field does not mean that these divergence conditions
can be entirely ignored when designing a numerical scheme to discretize (1.1). A
successful scheme must produce a numerical approximation that in some sense
satisfies discrete analogs of (1.1b) and (1.1d).

Either by using the Fourier transform in time, or because we wish to analyze
electromagnetic propagation at a single frequency (e.g. if the source currents
and charges vary sinusoidally in time), the time-dependent problem (1.1) can be
reduced to the time-harmonic Maxwell system. If the radiation has a temporal
frequency w > 0, then the electromagnetic field is said to be time-harmonic,
provided

E(xz,t) =N ((‘Xp(*lwl‘)E( )) 5 (1.3a)
D(x,t) =R (exp(—lwt)D( )) (1.3b)
H(x,t) =R (exp(—iwt)f{(a:)) , (1.3¢)
Quantity Units | Quantity Units
Electric field intensity € Vm~! [ Magnetic field intensity H Am '
Electric displacement D Cm~? | Magnetic induction B T
Electric current density J Am~? | Electric charge density p  Cm ™3

Table 1.1 A table giving the SI units appropriate for electromagnetic quantities.
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Bz, t) = R (exp(—iwt)é(m)) , (1.3d)

where i = /=1 and R(.) denotes the real part of the expression in parenthe-
ses. Note that E (and similarly other hat variables) are now complex-valued
vector functions of position but not time. Some authors instead choose a time
dependence of exp(iwt). Of course, the choice is arbitrary and, provided it is
used consistently, produces no difficulties. Our choice is fairly standard in the
mathematics literature.

For consistency we also need the current density and charge density to be
time-harmonic, so we assume

Tlzt] =R (exp(—iwt)j(a:)) .
p(x,t) = R (exp(—iwt)p(x)) .

Substituting these relations into (1.1) leads to the time-harmonic Maxwell equa-
tions:

—iwB+V x E =0, (1.4a)

V.D =, (1.4b)

—iwD -V x H=-J, (1.4¢)

V-B=0, (1.4d)

where the time-harmonic charge density p is given via charge conservation (1.2)

or by taking the divergence of (1.4c) and using (1.4b) as iwp = V - J and hence
can be eliminated from the equations.

Equations (1.4) give the time-harmonic Maxwell equations in differential
form. Frequently, particularly in the physics literature, they are stated in in-
tegral form. As an example, consider (1.4a) and let S be a smooth surface in R?
with boundary 95 and unit normal v. Then, using Stokes theorem, we find that

iw/B-udA*/(VxEyudA: E . Tds, (1.5)
S s as

Fic. 1.1. For a surface S with normal v the integrated flux of B normal to S
is given by the integral of the tangential component of E around the edges
shown. Here we show schematics for a triangle and rectangle, two important
surfaces from the point of view of numerical methods.
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where T is the unit tangent to 95 oriented by the right-hand rule relative to v.
In the integral formulation we see that E is naturally associated to line integrals,
whereas B is naturally associated to surface integrals. For example, in Fig. 1.1
we show this when S is a triangle or a rectangle, two important cases that will
appear later in the book.

Motivated by this integral formulation, finite difference schemes (in particular
the famous FDTD scheme of Yee [301,225]) usually associate the electric field
E with edges in a rectilinear mesh and the magnetic induction B with faces.
This is also the arrangement of discrete unknowns in a generalization of the
rectangular finite difference scheme to tetrahedral grids called the co-volume
scheme [214,240,241]. As we shall see in Chapter 5, we can also design finite
elements that have a similar arrangement of unknowns. Finally, we note that
(1.5) is also a starting point for the description of Maxwell’s equations in terms
of differential forms [164].

1.2.1 Constitutive equations for linear media

Equatlonb (1 4) must be augmented by two constitutive laws that relate E and
H to D and B respectively. These laws depend on the properties of the matter
in the domain occupled by the electromagnetic field. We can distinguish three
cases:

(1) Vacuum or free space In free space the fields are related by the equations
D=¢E and B=pH, (1.6)

where the constants ey and o are called, respectively, the electric permittivity
and magnetic permeability. The values of €y and po depend on the system of
units used. In the standard SI or MKS units

o = 4m % 1077 Hm ™',
€0 ~ 8.854 x 1072 Fm™*

Furthermore the speed of light in a vacuum, denoted by c, is given by ¢ =
Veoio ! (¢~ 2.998 x 10° ms™1) [274].

(2) Inhomogeneous, isotropic materials The most commonly occurring case in
practice is that various different materials (e.g. copper, air, etc.) occupy the
domain of the electromagnetic field. The medium is then called inhomoge-
neous. If the material properties do not depend on the direction of the field
and the material is linear, we have

D=¢E and B=uH, (1.7)

where € and o are positive, bounded, scalar functions of position (we shall
give a more careful description of these functions in Section 4.2).

(3) Inhomogeneous, anisotropic materials In some materials the electric or mag-
netic properties of the constituent materials depends on the direction of the



