AGHN MONOGRALA

i
A f‘ﬂ,iﬂl!x»:!!c-‘hn‘

A. bR T LR SIS

4

L)

o)
\
w

,"'

=4

»,

&1

a

L)
:

‘

IR
<



A Computational Logic

ROBERT S. BOYER and J STROTHER MOORE

SRI International
Menlo Park, California

@D

ACADEMIC PRESS
A Subsidiary of Harcourt Brace ]ovanpvich, Publishers

New York London Toronto Sydney San Francisco



CoPYRIGHT © 1979, BY AcADEMIC PREss, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data

Boyer, Robert S
A computational logic.

(ACM monograph series)

Includes bibliographical references and index.

1. Automatic theorem proving. I. Moore,
J Strother, Date joint author. II. Title.
III. Series: Association for Computing Machinery.
ACM monograph series.
QA76.9.A96B68 5194 79-51693
ISBN 0-12-122950-5

PRINTED IN THE UNITED STATES OF AMERICA

79 80 81 82 987654321



A Computational Logic



This i
ACM MONOGKAPH >EKRIES

Editor: THOMAS A. STANDISH, University of California at Irvine

A complete list of titles in this series appears at the end of this volume.



To our wives,
Anne and Liz



Preface

-

Mechanical theorem-proving is crucial to the automation of reason-
ing about computer programs. Today, few computer programs can be
mechanically certified to be free of “bugs.” The principal reason is
the lack of mechanical theorem-proving power.

In current research on automating program analysis, a common ap-
proach to overcoming the lack of mechanical theorem-proving power
has been to require that the user direct a proof-checking program. That
is, the user is required to construct a formal proof employing only the
simplest rules of inference, such as modus ponens, instantiation of
variables, or substitution of equals for equals. The proof-checking
program guarantees the correctness of the formal proof. We have found
proof-checking programs too frustrating to use because they require
too much direction.

Another approach to overcoming the lack of mechanical theorem-
proving power is to use a weak theorem-proving program and to intro-
duce axioms freely. Often these axioms are called “lemmas,” but they
are usually not proved. While using a proof checker is only frustrating,
introducing axioms freely is deplorable. This approach has been abused
so far as to be ludicrous: we have seen researchers “verify”” a program
by first obtaining formulas that imply the program’s correctness, then
running the formulas through a simplifier, and finally assuming the
resulting slightly simplified formulas as axioms. Some researchers
admit that these “lemmas” ought to be proved, but never get around to
proving them because they lack the mechanical theorem-proving



xli / PREFACE

power. Others, however, believe that it is reasonable to assume lots
of “lemmas” and never try to prove them. We are strongly opposed to
this latter attitude because it so completely undermines the spirit of
proof, and we therefore reply to the arguments we have heard in its
defense.

(1) It is argued that the axioms assumed are obvious facts about
the concepts involved. We say that a great number of mistakes in com-
puter programs arise from false “obvious” observations, and we have
already seen researchers present proofs based on false lemmas.
Furthermore, the concepts involved in the complicated computer
systems one hopes eventually to certify are so insufficiently canonized
that one man’s “obvious” is another man’s “difficult” and a third man’s
“false.”

(2) Itis argued that one must assume some axioms. We agree, but
observe that mathematicians do not contrive their axioms to solve the
problem at hand. Yet often the “lemmas” assumed in program verifi-
cation are remarkably close to the main idea or trick in the program
being checked.

(3) It is argued that mathematicians use lemmas. We agree. In
fact, our theorem-proving system relies heavily on lemmas. But no
proof is complete until the lemmas have been proved too. The as-
sumption of lemmas in program proving often amounts to sweeping
under the rug the hard and interesting inferences.

(4) TItis argued that the definition of concepts necessarily involves
the addition of axioms. But the axioms that arise from proper defini-
tions, unlike most “lemmas,” have a very special form that guarantees
two important properties. First, adding a definition never renders
one’s theory inconsistent. Second, the definition of a concept involved
in the proof of a subsidiary result (but not in the statement of one’s
main conjecture) can safely be forgotten. It does not matter if the defini-
tion was of the “wrong” concept. But an ordinary axiom (or “lemma”),
once used, always remains a hypothesis of any later inference. If the
axiom is “wrong,” the whole proof may be worthless and the validity
of the main conjecture is in doubt.

One reason that researchers have had to assume “lemmas” so freely
is that they have not implemented the principle of mathematical in-
duction in their theorem-proving systems. Since mathematical induc-
tion is a fundamental rule of inference for the objects about which
computer programmers think (e.g., integers, sequences, trees), it is
surprising that anyone would implement a theorem-prover for program



PREFACE / xill

verification that could not make inductive arguments. Why has the
mechanization of mathematical induction received scant attention?

Perhaps it has been neglected because the main research on mech-
anical theorem-proving, the resolution theorem-proving tradition
(see Chang and Lee [15] and Loveland [29]), does not handle axiom
schemes, such as mathematical induction.

We suspect, however, that the mechanization of mathematical in-
duction has been neglected because many researchers believe that
the only need for induction is in program semantics. Program semantics
enables one to obtain from a given program and specification some
conjectures (“verification conditions”) which imply that the program
is correct. The study of program semantics has produced a plethora
of ways to use induction. Because some programs do not terminate,
the role of induction in program semantics is fascinating and subtle.
Great effort has been invested in mechanizing induction in program
semantics. For example, the many “verification condition generation”
programs implicitly rely on induction to provide the semantics of
iteration.

But program semantics is not the only place induction is necessary.
The conjectures that verification condition generators produce often
require inductive proofs because they concern inductively defined
concepts such as the integers, sequences, trees, grammars, formulas,
stacks, queues, and lists. If you cannot make an inductive argument
about an inductively defined concept, then you are doomed to assume
what you want to prove.

This book addresses the use of induction in proving theorems rather
than the use of induction in program semantics.

We will present a formal theory providing for inductively con-
structed objects, recursive definitions, and inductive proofs. Readers
familiar with programming languages will see a strong stylistic re-
semblance between the language of our theory and that fragment of
the programming language LISP known as “pure LISP” (see McCarthy
et al. [35]). We chose pure LISP as a model for our language because
pure LISP was designed as a mathematical language whose formulas
could easily be represented within computers. Because of its mathe-
matical nature (e.g., one cannot “destructively transform” the ordered
pair (7, 3) into (8, 3)), pure LISP is considered a “toy” programming
language. It is an easy jump to the non sequitur: “The language and
theory presented in this book are irrelevant to real program analysis
problems because they deal with a toy programming language.” But
that statement misses the point. It is indeed true that our theory may



xiv / PREFACE

be viewed as a programming language. In fact, many programs are
naturally written as functions in our theory. But our theory is a mathe-
matical tool for making precise assertions about the properties of
discrete objects. As such, it can be used in conjunction with any of
the usual program specification methods to state and prove properties
of programs written in any programming language whatsoever.

When we began our research into proving theorems about recur-
sive functions [7, 38], we thought of ourselves as proving theorems
only about pure LISP and viewed our work as an implementation of
McCarthy’s [34] functional style of program analysis. However, we
now also regard recursion as a natural alternative to quantification
when making assertions about programs. Using recursive functions to
make assertions about computer programs no more limits the program-
ming language to one that implements recursion than using the or-
dinary quantifiers limits the programming language to one that im-
plements quantification! In this book we use both the functional style
and Floyd’s inductive assertion style [18] of program specification in
examples. (For the benefit of readers not familiar with the program
verification literature, we briefly explain both ideas when they are
first used.) We have relegated the foregoing remarks to the preface
because we are not in general interested in program semantics in this
book. We are interested in how one proves theorems about inductively
constructed objects.

Our work on induction and theorem-proving in general has been
deeply influenced by that of Bledsoe [3, 4]. Some early versions of
our work have been previously reported in [7, 38, 39, 40, 8]. Work
closely related to our work on induction has been done by Brotz [11],
Aubin [2], and Cartwright [14].

We thank Anne Boyer, Jacqueline Handley, Paul Gloess, John
Laski, Greg Nelson, Richard Pattis, and Jay Spitzen for their careful
criticisms of this book. We also thank Jay Spitzen for showing us how
to prove the prime factorization theorem. We thank Bernard Meltzer
for the creative atmosphere in the Metamathematics Unit of the Uni-
versity of Edinburgh, where we began our collaboration. Finally, we
thank our wives and children for their usually cheerful long-suffering
through the years of late hours behind this book.

Our work has been supported by the National Science Foundation
under Grant MCS-7681425 and by the Office of Naval Research under
Contract N00014-75-C-0816. We are very grateful to these agencies
for their support.



Contents
Preface xi

I. Introduction

Motivation 2

Our Formal Theory 2

Proof Techniques 3

Examples 3

Our Mechanical Theorem-Prover 4
Artificial Intelligence or Logic? 6

. Organization 6

II. A Sketch of the Theory and Two Simple Examples

An Informal Sketch of the Theory 8
A Simple Inductive Proof 16

A More Difficult Problem 19

. A More Difficult Proof 21

Summary 26

Notes 26

TEQgOEF > OmEUOE»

III. A Precise Definition of the Theory

Syntax 28

The Theory of IF and EQUAL 30
Well-Founded Relations 31
Induction 33

Shells 35

Natural Numbers 40

Literal Atoms 41

Ordered Pairs 42

Definitions 43

Lexicographic Relations 51

SrEoEEUO®E



vill / CONTENTS

K. LESSP and COUNT 52
L. Conclusion 54

IV. The Correctness of a Tautology-Checker

A. Informal Development 57
B. Formal Specification of the Problem 59
C. The Former Definition of TAUTOLOGY.CHECKER
D. The Mechanical Proofs 67
E. Summary 84
F. Notes 85
V. An Overview of How We Prove Theorems
A. The Role of the User 87
B. Clausal Representation of Conjectures 88
C. The Organization of Our Heuristics 89
D. The Organization of Our Presentation 91

VI. Using Type Information to Simplify Formulas

Type Sets 92

Assuming Expressions True or False 95
Computing Type Sets 96

. Type Prescriptions 97

Summary 101

Notes 102

TEOO®E P>

VII. Using Axioms and Lemmas as Rewrite Rules

Directed Equalities 103

Infinite Looping 104

More General Rewrite Rules 105

An Example of Using Rewrite Rules 107
Infinite Backwards Chaining 109

Free Variables in Hypotheses 111

pli=iel 4 o

VIIL. Using Definitions

A. Nonrecursive Functions 114
B. Computing Values 114
C. Diving in to See 116

IX. Rewriting Terms and Simplifying Clauses

Rewriting Terms 120
Simplifying Clauses 124
The REVERSE Example 126
. Simplification in the REVERSE Example 127

vowp



CONTENTS / ix

X. Eliminating Destructors

XI

XII.

XIII

.

XIV.

XVI.

Trading Bad Terms for Good Terms 130

The Form of Elimination Lemmas 133

The Precise Use of Elimination Lemmas 134

. A Nontrivial Example 135

Multiple Destructors and Infinite Looping 139

When Elimination Is Risky 139

Destructor Elimination in the REVERSE Example 141

QEEQgORE>

Using Equalities

Using and Throwing Away Equalities 145
Cross-Fertilization 146

A Simple Example of Cross-Fertilization 147

. The Precise Use of Equalities 149

E. Cross-Fertilization in the REVERSE Example 150

cowy>

Generalization

A Simple Generalization Heuristic 151

Restricting Generalizations 153

Examples of Generalizations 154

. The Precise Statement of the Generalization Heuristic 156
Generalization in the REVERSE Example 157

HOO® >

Eliminating Irrelevance

A. Two Simple Checks for Irrelevance 159
B. The Reason for Eliminating Isolated Hypotheses 160
C. Elimination of Irrelevance in the REVERSE Example 162

Induction and the Analysis of Recursive Definitions

A. Satisfying the Principle of Definition 164

B. Induction Schemes Suggested by Recursive Functions 171
C. The Details of the Definition-Time Analysis 180

D. Recursion in the REVERSE Example 183

Formulating an Induction Scheme for a Conjecture

A. Collecting the Induction Candidates 185

B. The Heuristic Manipulation of Induction Schemes 189
C. Examples of Induction 197

D. The Entire REVERSE Example 202

Illustrations of Our Techniques via Elementary
Number Theory
A. PLUS.RIGHT.ID 209

B. COMMUTATIVITY2.0F.PLUS 211
C. COMMUTATIVITY.OF.PLUS 216



x / CONTENTS

grrRTrrmommEyg

. ASSOCIATIVITY.OF.PLUS 221

TIMES 221
TIMES.ZERO 222
TIMES.ADDI1 223

. ASSOCIATIVITY.OF.TIMES 227

DIFFERENCE 233
RECURSION.BY.DIFFERENCE 233
REMAINDER 242

QUOTIENT 242

. REMAINDER.QUOTIENT.ELIM 243

XVII. The Correctness of a Simple Optimizing Expression

Compiler

A. Informal Development 253

B. Formal Specification of the Problem 257
C. Formal Definition of the Compiler 263
D. The Mechanical Proof of Correctness 266
E. Notes 279

XVIII. The Correctness of a Fast String Searching Algorithm

HOOw>

Informal Development 283

Formal Specification of the Problem 291

Developing the Verification Conditions for the Algorithm 292
The Mechanical Proofs of the Verification Conditions 301
Notes 305

XIX. The Unique Prime Factorization Theorem

A.
B.

C:

Appendix A.

Appendix B.

The Context 309

Formal Development of the Unique Prime Factorization
Theorem 311

The Mechanical Proofs 315

Definitions Accepted and Theorems Proved by Our
System 329

The Implementation of the Shell Principle 376

Appendix C. Clauses for Our Theory 380

References

Index

385

389



I

Introduction

Unlike most texts on logic and mathematics, this book is about how
to prove theorems rather than the proofs of specific results. We give
our answers to such questions as

When should induction be used?
How does one invent an appropriate induction argument?
When should a definition be expanded?

We assume the reader is familiar with the mathematical notion of
equality and with the logical connectives “and,” “or,” “not,” and “im-
plies” of propositional calculus. We present a logical theory in which
one can introduce inductively constructed objects (such as the natural
numbers and finite sequences) and prove theorems about them. Then
we explain how we prove theorems in our theory.

We illustrate our proof techniques by using them to discover proofs
of many theorems. For example, we formalize a version of the proposi-
tional calculus in our theory, and, using our techniques, we formally
prove the correctness of a decision procedure for that version of pro-
positional calculus. In another example, we develop elementary num-
ber theory from axioms introducing the natural numbers and finite se-
quences through the prime factorization theorem.

Since our theory is undecidable, our proof techniques are not per-
fect. But we know that they are unambiguous, well integrated, and
successful on a large number of theorems because we have pro-

1



2 / 1. INTRODUCTION

grammed a computer to follow our rules and have observed the pro-
gram prove many interesting theorems. In fact, the proofs we describe
are actually those discovered by our program.

A. MOTIVATION

Suppose it were practical to reason, mechanically and with mathe-
matical certainty, about computer programs. For example, suppose it
were practical to prove mechanically that a given program satisfied
some specification, or exhibited the same output behavior as another
program, or executed in certain time or space bounds.! Then there
would follow a tremendous improvement in the reliability of com-
puter programs and a subsequent reduction of the overall cost of pro-
ducing and maintaining programs.

To reason mechanically about programs, one must have a formal
program semantics, a formal logical theory, and a mechanical theo-
rem-prover for that theory. The study of formal program semantics has
provided a variety of alternative methods for specifying and modeling
programs. But all the methods have one thing in common: they reduce
the question, Does this program have the desired property? to the
question, Are these formulas theorems? Because of the nature of com-
puters, the formulas in question almost exclusively involve induc-
tively constructed mathematical objects: the integers, finite se-
quences, n—tuples, trees, grammars, expressions, stacks, queues,
buffers, etc. Thus, regardless of which program semantics we use to
obtain the formulas to be proved, our formal theory and mechanical
theorem-prover must permit definition and proof by induction. This
book is about such a theory and a mechanical theorem-prover for it.

B. OUR FORMAL THEORY

We will present a logical theory that we have tailored to the needs
of thinking about computer programs. It provides for the introduction
of new “types” of objects, a general principle of induction on well-
founded relations (Noetherian Induction [6]), and a principl€e permit-
ting the definition of recursive functions. Recursive functions offer

! See Manna and Waldinger [31] for a description of the many other ways that formal
reasoning can be usefully applied in computer programming.



D. EXAMPLES / 3

such a powerful form of expression when dealing with discrete mathe-
matics (such as underlies computer programs) that we do not use any
additional form of quantification.?

C. PROOF TECHNIQUES

After defining our formal theory, we describe many techniques we
have developed for proving theorems in it. We devote eleven chapters
to the description of these techniques and how, when, and where they
should be applied to prove theorems. The most important of these
techniques is the use of induction. The formulation of an induction
argument for a conjecture is based on an analysis of the recursive defi-
nitions of the concepts involved in the conjecture. Thus the use of re-
cursively defined functions facilitates proving theorems about induc-
tively defined objects. Many of the other proof techniques are
designed to support our induction heuristics.

D. EXAMPLES

All the techniques are illustrated with examples. Most of our tech-
niques are first illustrated with simple theorems about functions on
lists and trees. These elementary functions are simple to define and
are worth knowing if one is interested in mechanical theorem-proving
(as we assume many readers will be). In addition, it is more fun to
work through the proofs of novel theorems than through the proofs of,
say, the familiar theorems of elementary number theory.

We have also included four complicated examples, chosen from sev-
eral different subject domains, to illustrate the general applicability of
the theory and our proof methods.

In the first such example, we write a tautology-checker as a recur-
sive function on trees representing formulas in propositional calculus.
We exercise the theory and proof techniques in an interesting way by
stating and proving that the tautology-checker always returns an
answer, recognizes only tautologies, and recognizes all tautologies.

2 The program of using recursive functions and induction to understand computer
programs, and the use of computers to aid the generation of the proofs, were begun by
McCarthy [33, 34]. See also Burstall [12]. The idea of using recursive functions and in-
duction but no other form of quantification in the foundations of mathematics (or at least
of arithmetic) was first presented by Skolem in 1923 [52]. See also Goodstein [22].



