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PREFACE

Quantum mechanics 1s a probabilistic theory .while the <laswvical
mechanics 1s a deterministic one. The connection between ithe two was
eluding for a long time till Feynman blended them through his famcus
path integral representation of the kernel of the Schrodinger equation.
Since then the path Integral has come a long way and continues to
insplire both physicists and mathematiclans. For physicists, it is a very
powerful tocl, both at the conceptual as well as computational level.
For mathematicians, on the other hand, it is a priori a meaningles«
object and continues to provide a challenge for developing an-
appropriate framework within which it can be defined, understood and
manipulated.

These aspects of Feynman path integrals have been a stimulant to us
during our long assoclation with this fileld. Also during this perlod of
three decades the path integral literature has grown rapidly. The first
classlic book™by Feynman is aiready more than thirty years old while
another book by Schulman ls almost a decade old. The thlird excellent
book by Wiegel concentrates primarily on problems on polymer science.
Thus a need to write yet ancther book on the subject was felt by us.

The book attempts to cover the recent developments in the field of
path Integrals with the emphasis on exact results and approximation
schemes along with appllicationg in various areas. A consclous effort has
been put to make the book useful to speclalists in the fleld and
simultaneously tiransparent to non-specialists primarily interested 1in
the practlical applications of path integration.

The first chapter introduces the concept of Feynman path integral
and its relation with allied areas like Brownlan motion and Wiener
integrals. The second chapter discusses the Instanlaneous quadratic

Lagranglans and prepares the reader for the basic algebraic
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manipulations inherent in a path integral treatment of a quantal
problem. The third chapter deals with the path integration of the so

called "lwo-time quadratic actions”. The results derived in this chapter
are particularly useful from the point of view of applications. The path
integration in curved spaces forms tLhe subject matter of chapter 4. In
particular, the path integration Iin polar coordinates 1s Ltreated in
detail considering its importance in applications. The fifth chapter
introduces the recently developed global and local time transformation
techniques ©because of their potential in the context of path
integration. The next chapter is concerned with the palh integration
methods to deal with the problems involving topological constraints.
This chapter provides also an account of selected applications of these
techniques.

Most of the literature on the subject have not considered the
relation between invariants of motion and Feynman propagator and hence
it was felt desirable to include a chapter on this theme. Chapter 7
discusses in detail how the knowledge of invariants of motion can be
hélpful in obtaining Feynman propagator. A

The next three chapters are concerned with some approximation
techriiques frequently used in path integral applications. Notable
amongst them is the so-called cumulant approximation method. A separate
chapter is devoted to this method and its applications. The chapter on
perturbation method has been written with a slightly different
perspective. The major question which we pose here concerns the
summability of the series rather than the conventional applications
which can be found in almost all texi books on the subject. The chapter
on semiclassical analysis has been added primarily for the sake of
completeness. An extensive and excellent discussion of this topic is
already available in published form.

A significant departure from the earlier published books is the
inclusion of a chapter on numerical methods of computing path integrals.
In particular, Monte Carlo methods have been discussed in detail in
chapter 11.

The last chapter presents briefly the difficulties encountered in

providing a proper mathematical interpretation to Feynman path integral
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and some of the attempts in resolving them. Most of the discussion has
been deliberately kept at a qualitative level to make it more
transparent. The more curious reader may find the references listed at
the end of chapter 12 useful for more rigorous treatment.

Writing of this book has taken more than two years. Stimulating
discussions with several colleagues have helped in bringing the book to
its present form. It is a pleasure to thank them all. In particular we
acknowledge constant encouragement from Dr. R. Chidambaram all
throughout this trying period. Lastly, we must express our sincere
thanks to Mrs. Smita Khandekar for her assistance in typing and editing

of the present manuscript.

Authors



Preface

Chapter 1

Chapter 2

CONTENTS

INTRODUCTION TO PATH INTEGRALS

1.1 Introduction

1.2 Feynman Path Integral
1.2.1 Feynman formulation
1.2.2 Relation to other approaches of quantum

description

1.2.3 Functional calculus

1.3 Random Walk, Brownian Motion and Wiener integral
1.3.1 Random walk and Brownian motion
1.3.2 Wiener integral

1.4 Trotter Product Formula and Alternative
Derivation of Path Integral

1.5 Path Integral Subtleties

Notes and References

PROPAGATORS FOR LOCAL QUADRATIC LAGRANGIANS
2.1 Introduction
2.2 Derivation of the Propagator
. 2.2.1 Evaluation of limiting expression for DN
2.2.2 Evaluation of SCl
3 Specific Cases
4 Velocity Dependent Potentials
5 General Quadratic forms
6 Propagator Beyond the First Singularity of VPD

Notes and References

11
14
14
16

21
24
26

29
29
29
32
33
35
38
40
43
46



x Contents

Chapter 3

Chapter 4

NON-LOCAL QUADRATIC ACTIONS
3.1 Elimination of Degrees of Freedom
3.1.1 System coupled to a harmonic oscillator
3.1.2 An electron in a random potential
2 Two-time Quadratic Actions
3 Extension to More General Non-local Actions
4 Examples of Explicit Evaluation
3.4.1 Generalized one-time actions
3.4.2 Translationally invariant two-time actions
3.4.3 Propagator for the polaron kernel
3.5 Applications of Two-time Quadratic Actions
3.5.1 Exactly solvable model of electronic
density of states (DOS)
3.5.2 Polymer distribution functions
3.5.3 Propagation of waves in random media

Notes and References

PATH INTEGRALS IN GENERAL COORDINATE SYSTEMS
4.1 Introduction
4?2 Path Integrals in Polar Coordinates
4.2.1 Polar coordinates in two dimensions
4.2.2 Polar coordinates in three dimensions
4.2.3 Generalization to d-dimensional
polar coordinates
4.3 Examples of Explicit Evaluation
4.3.1 Free particle propagator
4.3.2 Rotor in d-dimensions
4.3.3 Central potentials
4.3.4 Non-spherically symmetric potentials
4.4 Path Integration in General Curved Spaces
4.4.1 Quantization of classical Hamiltonian
4.4.2 Derivation of a path integral

Notes and References

48
48
48
50
53
57
59
59
61
63
69

69
71
75
79

82
82
83
84
88

93

98

98
100
102
104
107
107
112
116



Contents  xi

Chapter 5 COORDINATE TIME TRANSFORMATIONS IN PATH INTEGRALS 119
5.1 Introduction 119

5.2 Local Time Transformations in Classical Mechanics 120

5.3 Concept of the Promotor 124

5.4 Coordinate-Time Transformations in Path Integral 125

5.5 Illustrative Examples 131

5.5.1 Coulomb potential 131

5.5.2 Morse potential 134

5.6 Propagators Related to a Rigid Rotor 136

5.6.1 Infinite square well 140

5.7 Coulomb Problem Based on KS Transformation 142

Notes and References 149

Chapter 6 CONSTRAINED PATH INTEGRALS 151
6.1 Examples of Constrained Pathvlntegrals 151

6.1.1 Problems in polymer physics 151

6.1.2 Aharonov-Bohm effect 153

2 The Constraint As a Functional 155

3 Evaluation of The Path Integral 156

6.3.1 A simple entanglement problem 157

6.4 Evaluation of The Propagator 161

5 Propagators corresponding to

More Than One Constraints 164
6 Total Winding Index and Stochastic Area 167
7 Statistical Mechanics of Entangled Polymers 171
6.7.1 The properties of entangled polymers 171
6.7.2 The properties of entangled polymers:
Entanglement with clusters 174
6.8 Aharonov-Bohm Effect 179
Notes and References 183
Chapter 7 TIME DEPENDENT INVARIANTS AND FEYNMAN PROPAGATOR 186
7.1 Introduction 186

7.2 Classical and Quantal Invariants 188



xii  Contents

Chapter 8

Chapter

9

7.2.1 Noether invariants

7.2.2 Derivation of invariant based on
Hamiltonian description

7.2.3 Examples of invariants

Schrgdinger Equation and Invariants

4 Feynman Propagator

Invariants Quadratic in Momentum and the Propagator

7.5.1 1Illustrative examples

6 Role Played by the Invariant I

7 Global Time Transformatiom in Feynman Path Integral

THE

8.
8.
8.

1
2
3

.4

Notes and References

CUMULANT APPROXIMATION FOR FEYNMAN PROPAGATORS
Introduction
The Cumulant Approximation
Spectrum of Positionally Disorderd Systems
8.3.1 Basic formulation
8.3.2 Evaluation of G
8.3.3 The Behaviour of density of states
8.3.4 The density of states for

Gaussian correlation
The Polaron Problem
8 4.1 Free energy and ground state energy
8 4.2 The effective mass

The Bi-Polaron Problem

6 Polymer Distribution Functions

THE

9.1

A

3

I3

e}

Notes and References

PERTURBATION APP'ROACH
Introduction
The Perturbation Series

One-Dimensional Delta-function Potential

.4vinverse Square Potential

“ The Coulomb Potential

Ceneral Formulation

188

192
194
198
202
205
208
210
213
218

220
220
220
225
225
226
229

231
236
239
243
245
250
252



Contents  xiii

9.6.1 Inverse-square potential (l1-dimensional) 272

9.6.2 Harmonic oscillator (1-dimensional) 272

9.6.3 Coulomb potential 215

9.6.4 The singular potentials 276

Notes and References 278

Chapter 10 SEMICLASSICAL PROPAGATOR 280
10.1 Introduction 280

10.2 Asymptotic Analysis 281

10.3 Semiclassical Approximation 284

10.4 A Particle in an Inverse Square Potential 289

Notes and References 291

Chapter 11 NUMERICAL METHODS OF SUMMING OVER PATHS 292
11.1 Introduction 292

11.2 Monte Carlo Method 293

11.3 Path Integral by Monte Carlo 307

11.4 Deterministic Techniques of Path Summation 317

Notes and References 319

Chapter 12 MATHEMATICAL NATURE OF FEYNMAN PATH-1NTEGRAL 323
12.1 Introduction 323

12.2 Definition through Limiting Procedures 324

12.2.1 Trotter product formula 324

12.2.2 Generalized Gaussian integrals 325

12.3 Definition through White Noise Calculus 327

12.3.1 White noise calculus 327

12.3 2 Feynman propagator 334

12.3.3 A new expansion for the propagator 339

Notes and References 342



CHAPTER 1

INTRODUCTION TO PATH INTEGRALS

1.1. Introduction

This book is on path integrals and their applications to physics at
large. Naturally we begin with Feynman, who first introduced the concept
to physicists in hls new space-time formulation of non-relativistic
quantuii mechanics published iIn his classic 1948 paper in Reviews of
Modern Physlics. Feynman himself established that this third formulation
of quantum mechanics, the path integral approach, 1is equivalent to the
usual formulations of Schrodinger as well as that of Heisenberg and
Dirac. Incldentally, three Iindependent mathematical disclplines are
associated with the three formulations of quantum mechanics. While
Helsenberg-Dirac method relles on "algebra", Schrddinger’'s approach 1is
based on differential equations and hence uses "analysis". Feynman's
method on the other hand 1s based on "geometry". This gecmetrical way
of expressing the quantum superposition principle 1s intuitively
appealing since it allows us to directly visualize the constructive or
destructive Interference arising from many different paths. Feynman
himself attributed this multiplicity of possible descriptions of quantum
phenomena to our having captured key elements in our description of
atomic phenomena and 1Is an expression and representation of the
simplicity of nature.

In fact the notion of a path Integral usually called a functional
integral had been familiar to mathematicians much before Feynman. It was
Volterra who used this 1idea in his work on functional calculus. A
functional 1is to be considered analogous to a function of infinitely
many varliables. Calculations involving a functional are carried out by

assuming it to be a function of a finite number N of wvariables and



2 Path-Integral Methods and their Applications

subsequently letting N — . The procedure is similar to the “time
slicing prescription” used by Feynman. We shall encounter this many
times 'later in the book. Early papers of Daniell deals with some
attempts of integrating a functional over a space of functions and are
reviewed by Kac. Subsequently Wiener ‘introduced a proper
measure-theoretic definition of an integral of a functional over a space
of functions. The analogy between Feynman path integral and Wiener
integral has been extensively discussed in the literature.

The major motivation of this chapter 1is to introduce the notion of
a path Integral from a physicist's point of view. We shall outline the
path integral formulation of non-relativistic quantum mechanics in a way
that Feynman presented in his 1948 paper and subsequently in the book by
Feynman and Hibbs. We shall then discuss the alternative ways of looking
at a path integral using the idcas of random walk, Brownian motion and

Wiener measure.

1.2. Feynman Path Integral

Before we present Feynman's intuitive arguments for introducing the
path 1integral formulation we may outline the scenario at his time.
Quantum mechanics was traditionally based on the Hamiltonian formulation
of ciasslcal mechanics. The rules goveraing the ‘transition frem

classical to quantum description are summarized in Table 1

Table 1 :Classical vs. Quantum Description

Classical Mechanics Quantum Mechanics
1. Variables: x, p (c-numbers),{x,p} =1 x, p (operators), [x,pl =1
2. Hamiltonian: H(x, p) H(x, p)
3. Dynamical Law: df (x,p)/dt = {f H} a) Heisenberg Eq : ihg{ = [f,H]

H. J. equation 7 b) Schrédinger Eq : ih %% = Hy

H = H(x, -1ha/ox)

4: Lagrangilan: L(x, x) ?

The classical description of a system is through a set of conjugate

variables x, p satisfying the Poisson Bracket (PB) relaticn {x,p} = 1.
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The dynamlcs is described by Hamilton’s equations written in the general
PB notation in Table 1. In quantum description these conjugate variables
are replaced by non-commuting operators ;, ; and a statement governing
the time evolution of these operators. The commutation relation is

[x,p] = 1hI, 1 representing the 1dentity operator. Further, the
dynamical law is

ih dx /dt = Ix , H] To(2.1)

in Heisenberg picture which is reminiscent of classical PB theory.
Alternatively the dynamical law may take the form of the Schrodinger
equation

ih dy/6t = Hy (2:-2)

where the quantum Hamiltonian operator ﬁ is obtained from the classical
Hamiltonian H(x, p) by the simple ieplacement p — -1hd/8x . In all this
formulation there remained an important gap between quantum and
classical mechanics. The Lagrangian formulation, which had preceded the
Hamiltonian approach in classical mechanics had practically no role in
the quantum formulation. There was, however, one remote connection. This
involved the derivation of classical Hamilton-Jacobl (HJ) equation from

the Schrodinger equation by means of the transformation
Y — C exp(iS/h) (2.3)
where S is the classical action and C is real. In fact the substitution
of (2.3) in Schrddinger equation
. s 2 . 2 2
ih (878t)y = (- h/2m) (8°/ax°)y + V y (2.4)
for a particle of mass m moving in a one-dimensiocnal potential V(x),
yields the HJ equation
(85/8t) + (1/2m) (85/8x)* + V = 0 (2.5)

if terms O(h/S) are neglected. If, however, these terms are retained, we
obtain the continuity equation

8p/at + alpv)/dx = 0 (2.6)

2

where p = ‘w]z = C° and v = (85/8x)/m. Note that (2.3) with S determined

from (2.5) represents just the solution of (2.4) in WKB approximation
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valid for h — 0. Thls correspondence between Schrédinger equation and
HJ equation in the semiclassical 1limit (h -—» O0) answers the first
question ralsed in Table 1.

Regarding the second question in Table 1, it was Dirac who had
first emphasized the possible lmportancé of Lagrangian 1in quantum
mechanics in one of hls early papers and later in his book. Feynman
exploited Dlirac's remarks to arrive at his so-called Lagrangian

formulation of quantum mechanics.

1.2.1. Feynman formulation

In standard quantum mechanics one assigns a complex probability
amplitude y(x,t) (called the wave functlion) with the position x of a
particle at time t. For simplicity, we shall use notation corresponding
to a single dimension, the generalization to more than one being
trivial. The probability density for the particle to be found at x at
time t is then simply given by |w(x.t)|? Instead, Feynman assocliated a
probability amplitude with the "entire motlon of a particle as a
function of time" characterized by the path or the trajectory x(t) of
the particle. He then extended the quantum superposition principle to
apply for paths making use of the following basic distinction between
classical and quantum probabilities.

Let P(a]b) denote the conditional probabillity of an event a given
that the event b occurred and similarly for P(a|c) and P(b|c). Then,

classically one has the rule

P(ajc) = £ P(a|b) P(b]c) (2.7)
b

where the sum is over all events (or states) b that can occur between c
and 2. The quantum mechanical rule , however, is somewhat different
Here we have to work with a probability amplitude ¢ab which like P(alb)

depends on two states and follows a relation similar to (2.7)

¢ = ¥ ?o e (2.8)
b

ac

where as before the sum is over all possible states b. The difference in
these two situations is that ¢ 1s not a probability but amplitude such
that |¢|2 is interpreted as a probability. Equation (2.8) is, in fact,
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the quantum superposition law as extended to paths and is illustrated in

Fig. 1.1 by the double slit experiment.

Fig. 1.1. Double slit experiment. The electron at c can reach tHe point

a on the screen either by taking the path cba or the path cb’a. The

abc ¢ab'¢bc
fis ¢ab’c = ¢ab"¢b’c' The total amplitude is thus ¢ac= ¢

amplitude for the path cba is ¢ and that for the path cb’a

abc+ ¢ab‘c
¢ab¢bc+ ¢ab’¢b'c' Here ¢ab is the amplitude for the path ab, etc.

An electron passes through either (or both) of two slits on its way
to the screen. The superposition rule would imply an interference
pattern on the screen. Any attempt to verify through which slit the
electron went will destroy the interference pattern. Feynman translated
this in the Language of "sum over paths" by simply interpreting ¢‘b to
be the amplitude for "path" of the electron from b to a and used (2.8)
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as a postulate to derive his path integral formulation. There is no
assertion here that the particle followed definite paths with certain
probabilities. One has to obtain the probability amplitudes for various
paths and add them to obtain the total amplitude.

In analogy with the double slit experiment the basic quantity in
Feynman formulation 1is the probability amplitude K(x”,t”;x’,t’) for a
non-relativistic particle to go from a space-time point (x’,t’) to
(x”,t”). We must then sum over all intermediate possibilities, that is,
our sum must Iinclude contributions from each trajectory connecting
(x’,t’) to (x”,t”). If we denote the probability amplitude for a
trajectory x(t) (x(t’) = x’ and x(t”) = x”) by ¢[x(t)], the total
ampllitude

K(x”,t”;x",t") = T ¢ [x(t)] . (2.9)

{X(t))

How do we obtain ¢ [x(t)]? It is here that connection with Dirac’s idea
comes in. Dirac noticed that the transformation function K, taking
particle from (x’,t’) to (x”,t”), more commonly known as the propagator
is "analogous" to exp [1S/h] where S is the solution of the HJ equation.
As mentioned earlier, this 1is to be expected for small h (WKB
approximation). However, Dirac also observed that exp [1S/h] is also a
reasonable approximation when the time interval over which K propagates
tends to zero. Thus for the simple Lagrangian of a particle of mass m
moving in a potential V(x) given by

‘2

L = mx° - V(x) , (2.10)

L
2

Dirac propagator assumes the form

2
K(x,y;e) = K(x,t+e;y,t) = % exp {%E [ E [§£X] - V(x)]} (2.11)

for small €. A consequence of the superposition law is the integral
equation
Yix,t+e) = I K(x,t+e;y,t) yly,t) dy (2.12)

connecting the wave function at time t to the wave functlion at time t+e.
Summation over intermediate state b now corresponds to the particle

position y at time t. If (2.11) is inserted in (2.12), one obtains



