ROBERT F. BROWN

A TOPOLOGICAL
INTRODUCTION
TO NONLINEAR
ANALYSIS

Second Edition

irkhauser



- ‘“Robert F. Brown

A Topological Introduction
to Nonlinear Analysis
Second Edition

I
’@% Q«y

[INAN

E200501279

Birkh&duser
Boston ¢ Basel ¢ Berlin



Robert F. Brown

Department of Mathematics
University of California

Los Angeles, CA 90095-1555
USA

Library of Congress Cataloging-in-Publication Data

A CIP catalogue record for this book is available from the Library of Congress,
Washington D.C., USA.

AMS Subject Classifications: 47H10, 55M20, 47H11, 34B15, 34C23, 34B60, S5M25, 47J25, 47J10,
34B25, 54H25, 34C25

ISBN 0-8176-3258-1 Printed on acid-free paper.

®
©2004 Birkhéuser Boston Birkhduser B

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Birkhduser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden. : <

The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinions as to whether or not they are
subject to proprietary rights.

Printed in the United States of America. (SB)
987654321 SPIN 10936399
Birkhiuser is part of Springer Science+Business Media

www.birkhauser.com



To Brenda



Preface

Nonlinear analysis is a remarkable mixture of topology (of several different types),
analysis (both “hard” and “soft”) and applied mathematics. Mathematicians with a
correspondingly wide variety of interests should become acquainted with this impor-
tant, rapidly developing subject. But it’s a BIG subject. You can feel it: just weigh
in your hand Eberhard Zeidler’s Nonlinear Functional Analysis and its Applications
I: Fixed Point Theorems [13]. It’s heavy, as a 900 page book must be. Yet this is
no encyclopaedia; the preface accurately describes its “... very careful selection of
material . ..” And what you are holding is Part I of a five-part work.

So how do you get started learning nonlinear analysis? Zeidler’s book has a first
page, and some people are quite content to begin right there. For an alternative, the
bibliography in [13], which is 42 pages long, contains exposition as well as research
results: monographs that explain greater or lesser portions of the subject to a variety
of audiences. In particular, [4] covers much of the material of Zeidler’s book. Then
what’s different about the exposition in this book? My answer is in three parts: this
book is (i) topological (ii) goal-oriented and (iii) a model of its subject. The next
three little paragraphs explain what each of these means.

(i) As the title states, this is a topological book (though it’s not a book of topol-
ogy). I'm a topologist and, as I've studied nonlinear analysis I've became impressed
by the extent to which the subject rests, in a strikingly simple and natural way, on
basic topological ideas. These ideas come from general (point-set) topology, from
metric space topology and, in the form of classical homology theory, from algebraic
topology as well. It’s possible to disguise, or even to replace to some extent, the sub-
stantial topological content of this subject, but that won’t happen in this book. On the
contrary, we’ll make sure our analysis rests on a secure base of carefully-expounded
topology.

(>ii) The goal of this book has a name: the Krasnoselski—Rabinowitz bifurcation
theorem. By the time you finish this book you will know what this beautiful result
says, understand why it is true, and, through a single but very striking instance, get
some idea of how it is applied. You can come to this book with little specific prepa-
ration. If you’ll accept a few facts from elementary homology theory, this book is
self-contained beyond the undergraduate real analysis level. Yet by the end of its rel-
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atively few pages you will see how, in the late 20th century (ca. 1970), we gained a
new understanding of an 18th century mathematical model of a column collapsing
under excessive weight.

(iii) Beyond its power and elegance, the Krasnoselski-Rabinowitz theorem has
another virtue that made it irresistible as a topic for this book: the structure of its
proof and this application is itself a model of the interplay of topological and analyt-
ical ideas that is characteristic of much of nonlinear analysis. The topological ingre-
dients for the proof come from all the branches I mentioned: a separation theorem
for compact topological spaces from general topology, Ascoli-Arzela theory from
metric space topology, and the Leray—Schauder degree from algebraic topology. A
key step in the proof is a calculation formula for Leray—Schauder degree which, in
turn, depends on a substantial topic in functional (“soft”) analysis: the spectral theory
of compact linear operators on Banach spaces. The classical “hard” analysis comes
into play once we have the relatively abstract bifurcation theorem and want to use it
to study the ordinary differential equation problem that models column buckling.

As a curtain raiser to the relatively extensive discussions that lead us to the
Krasnoselski-Rabinowitz theorem, I’ll show you a simpler and more classical topo-
logical tool from the nonlinear analyst’s toolbox: the Schauder fixed point theorem,
along with a rather recent and easily understood application of it. This is also a model
of nonlinear analysis: the topological topics of the Ascoli-Arzela theorem and fixed
point theory are applied, with the help of some elementary but clever calculus, to
investigate the equilibrium distribution of heat in a rod.

This book was born at a conference at the University of Montreal organized by
Andrzej Granas in 1983 where the talks, especially those of Ronald Guenther, Roger
Nussbaum and Paul Rabinowitz, made nonlinear analysis accessible. UCLA gave
me the opportunity to communicate what I was learning about this subject, and to
refine these notes, through specialized courses I taught in 1984, 1987 and 1992.
The students and colleagues who attended these courses or talked to me about my
plans for them helped me in many ways. I thank especially Joseph Bennish, Jerzy
Dydak, Massimo Furi, Reiner Martin, and PierLuigi Zezza. The first time I taught
about topology and nonlinear analysis, my late colleague Earl Coddington faithfully
attended my lectures and didn’t seem to think it was ridiculous for a topologist to try
to present analysis from his own point of view. The fact that this book was written is
a consequence of Earl’s encouragement

About the Second Edition

Jean Mawhin’s eloquent argument in [8] that much of nonlinear analysis could be
illustrated in the context of the forced pendulum suggested some quite direct appli-
cations of the two main tools of the book, the Schauder fixed point theorem and the
Leray—Schauder degree. In particular, the reader can now see a demonstration of the
usefulness of the degree before being introduced to bifurcation theory. The book’s
contents have been restructured into three parts to reflect this change. The other sig-
nificant addition consists of some background material from functional analysis and
the theory of differential equations that now makes the book self-contained with re-
gard to topics more advanced than undergraduate-level real analysis except for one
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subject. That subject is algebraic topology which, as in the first edition, receives only
a bare-bones exposition. However, the task of putting flesh on those bones has be-
come much easier with the recent publication of Hatcher’s excellent algebraic topol-
ogy text [7].

In 1998, Paul Rabinowitz was awarded the Birkhoff Prize by the American Math-
ematical Society and the Society for Industrial and Applied Mathematics, in large
part because of the profound influence on nonlinear analysis of his remarkable theo-
rem that is the goal of this book.

Robert Amodeo patiently guided me through various computer-related difficul-
ties. I thank Ann Kostant, my editor at Birkhauser, for suggesting that I prepare this
revised and expanded edition.

Los Angeles, September 2003 Robert F. Brown
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The Topological Point of View

This book is about the topological approach to certain topics in analysis, but what
does that really mean? Starting with the “epsilon—delta” parts of elementary calcu-
lus, analysis makes extensive use of topological ideas and techniques. Thus the issue
is not whether analysis requires topology, but rather how central a role the topolog-
ical material plays. Rather than attempt the hopeless task of defining precisely what
I mean by the topological point of view in analysis, I'll illustrate it by outlining two
proofs of a well-known theorem about the existence of solutions to ordinary differ-
ential equations. In the first proof, the key step is the construction of a sequence of
approximate solutions whose limit is the required solution. In the second proof, a
general topological theorem about the behavior of selfmaps of linear spaces implies
the existence of the solution. The two proofs have several features in common, in-
cluding their dependence on a substantial topological result, but I trust that even my
(intentionally) very sketchy treatment will make it clear how basic the differences are
in the ways that the two arguments reach the same conclusion. Here’s the theorem.

Theorem 1.1. (Cauchy—Peano Existence Theorem) Given a function f : R* — R
which is continuous in a neighborhood of a point (xo, yo) € R2, there exists a > 0
and a solution to the initial-value problem

Y= xy  yx)=y

on the interval [xo — a,x0 + o]. That is, there exists a continuous function ¢ :
[xo — o, xo + ] = R such that ¢ (x0) = yo and ¢'(x) = f(x, ¢(x)) for all x in the
interval.

The two proofs produce the number « in the same way. Since f is continuous in
a neighborhood of (xg, yo) € R?, there exists @ > 0 such that if (x,y) € R? with
|x — xo| < aand |y — yo| < a,then f is continuous at (x, y). Let O be the square
in the plane consisting of such points, that is,

Q={(x,yeR*:|x—xl<a and |y—yo| <a)
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and choose M > 1suchthat M > |f(x, y)| for all (x,y) € Q. Then seta = -f?
Notice how the definition of & depended on some familiar topology. A neighborhood
means an open set and therefore the euclidean topology of the plane gives us an
open disc about (xp, yo) on which f is continuous. We choose a small enough to
fit the square Q inside the open disc. We know that the set of values | f(x, y)| for
(x,y) € Q is bounded, and therefore M exists, because Q is closed and bounded,
that is, compact, so by a standard result its image under the continuous function | f|
is a compact subset of the line and therefore bounded.

Another feature the two proofs have in common is that they make use of the
fact that the fundamental theorem of calculus gives us, as an equivalent form of the
initial-value problem, the integral equation

y(x) =y +/ f@, y@)de.
X0

That is, a function ¢ : [x9 — @, x9 +«] — R is a solution to the intial-value problem
if and only if it is a solution to the integral equation.

The remaining common feature is that substantial topological result I referred to
earlier: the Ascoli-Arzela theorem. I’ll indicate in both proofs where and how this
theorem is used, but in neither case is it necessary to state the result itself. However,
I’ll present a detailed discussion and proof of this theorem in the next chapter because
the Ascoli-Arzela theorem will play a crucial role throughout the entire book.

1.1 Outline of the Approximation Proof

For each integer n > 1, choose §, > 0 small enough so that |x — X| < §, and
ly — 3| < §, implies

— - 1
£ 9) = F&ED < —
Then choose points

oy — ™ (n) . (n) ) _ . (n) (n)
Xo—o=XxT; <X o< <xIi<xo<x' < <Xy <X

=x0+«

such that

dn
< =y
- M

Define a piecewise-linear, continuous function ¢, : [xo — &, xo + @] — R in the
following manner. See Figure 1. On the interval [xp, xf")], set ¢, (x0) = yo and let
the slope of the line segment equal f(xg, yo). On the interval [x{"), xé")], the slope

of the line segment is f (xf"), yf")), where y{") = qb,,(xf")). Continue in this manner,

moving to the right until you reach xg’) = xo + «. Then define ¢, to the left of xg in

() _ x(-")

Lj+1 —%j

a corresponding way. The function ¢, () is differentiable for all ¢ #~ xj") , with
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slope = f@z{™,11"”)

lope = f(zo,
slope = f( oyo)\ )

(xo0, yo)

i (=, 4)

i I I s L

z") " Z ™ )

Figure 1.

p (D) = f(x, gn(x™))

for xj(.") an endpoint of the interval in which ¢ lies.

The sequence of functions {¢,} contains a subsequence that converges uniformly
on the interval [xo — &, xo + «]. This is a consequence of the Ascoli-Arzela theorem
that we will discuss in detail in the next chapter. For now, all we need to know is that
it gives us a continuous function, the limit of the subsequence, and we denote that
function by ¢.

To complete the proof, we verify that ¢ is a solution to the initial-value problem.

The argument consists of writing

®n(x) = yo +/ f@, on (1) + An(t)dt

where

$n(0) = £, 6(0)), if £ £ x

e ()
R 1ft-—xj

Ap(t) = [

and noting that |A, (f)] < % so that the limiting function ¢ does satisfy the equivalent
integral equation. |

1.2 Outline of the Topological Proof

Let C be the set of all real-valued functions that are continuous on the closed interval
[xo —a, xo +a]. The set C inherits a linear space structure from the reals by defining,
foru,v € C and r € R, the sum (4 + v)(x) = u(x) + v(x) and scalar product

ru(x) =rux)).
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For this proof of the Cauchy—Peano theorem, a subset A of C is defined in the
following way. We use the positive numbers M and « chosen before we began either
proof. A function u € C is in A if it has the properties

(D) lu(x) —yol <a forall x € [xgo—a,x+ ],
(2) lu(x1) —u(x2)| < Mlxy —x2| forall xi,xz € [xo— ¢, x0+].

The set A is a convex subset of C, thatis,if u,v € Aand0 <t < 1, then
tu+(1—-tveA

also.
Define the norm ||u|| of a function u € C by

llull = max{lu(x)] : xo — < x < xp+ a}.
A topology is defined on C by means of the metric d given by
d(u,v) = [lu — v

and the space C is called a normed linear space. The set A is closed in C with respect
to this topology. If we apply the Ascoli-Arzela theorem in this proof, it tells us that
the set A is compact.

Define a function T : C — C by letting

Tu(x) = yo+ / £ u())ds
X0

for u € C. We have seen that a solution to the integral equation equivalent to the
initial-value problem is a function ¢ : [xo — «, xo + ] — R such that

S0 = -+ [ £t $@)dr
xo

for all x € [xo — «, xg 4+ «]. Since the right-hand side of this equation is T¢, we
see that ¢ has the property that T¢ = ¢. A point u € C is called a fixed point of
T : C — C if Tu = u. Thus, to prove the Cauchy—Peano theorem, it is sufficient to
prove that T has a fixed point.

The existence of a fixed point of T is a consequence of the following topological
result.

Fixed Point Theorem. If A is a compact, convex subset of a normed linear space
X and T : X — X is a continuous function such that T (A) C A, then there exists
u € Asuchthat Tu = u.

The continuity of the function T' defined above follows from the continuity of f
on Q.1It can be shown that if u € A, then Tu also satisfies the conditions (1) and (2)



1. The Topological Point of View 7

defining A and therefore 7'(A) C A. In this way, all the hypotheses of the fixed point
theorem are verified and that completes the proof. |

My purpose in presenting the two proofs of the Cauchy—Peano existence theorem
was to illustrate two approaches, one of them characteristically topological; it was
not to try to convince you that the topological approach is necessarily superior. In
fact, the explicit construction of approximate solutions may well be quite useful. The
topological method is important when there are no other, more concrete, alternatives
available. We will see in the rest of the book that, in such cases, topology can offer
us important insights into significant analytic problems.



