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We dedicate this volume to the memory of the outstanding Soviet con-
densed matter theorist. [lva Mihailovich Lifshitz, who died on October 23,
1982. His work during the past forty years pointed to new directions in
many areas of condensed matter physics. including low temperature physics,
metal physics, the dynamical properties of crystals containing defects and of
disordered crystals, and polymer physics. It is particularly fitting that a
volume concerned with-surface excitations is dedicated to llya Mihailovich.
whose pioneering work with Rosenzweig in the late 1940’s laid the founda-
tions for the present day theory of the vibrations of crystal surfaces. A man
of vast heart. great kindness. and unusual generosity. Ilya Mihailovich will
be missed by his colleagues on the International Advisory Board of this
series, and by all who had the good fortune to know him.

V.M. Agranovich
R. Loudon
/ A.A. Maradudin



Oh, how many of them there
are in the fields!

But each flowers in its

own way —

In this is the highest achievement

of a flower!
Marsuo Bashi

- ’ 1644 - 1694

PREFACE TO THE SERIES

“Modern Problems in Condensed Matter Sciences” is a series of contrib-
uted volumes and monographs on condensed matter science that is pub-
lished by North-Holland Publishing Company. This vast area of physics is
developing rapidly at the present time, and the numerous fundamental
results in it define to a significant degree the face of contemporary science.
This being so, it is clear that the most important results and directions for
future developments can only be covered by an international group of
authors working in cooperation.

Both Soviet and Western scholars are taking part in the series, and each
contributed volume has, correspondingly, two editors. Furthermore, it is
intended that the volumes in the series will be published subsequently in
Russian by the publishing house ** Nauka™.

The idea for the series and for its present structure was born during
discussions that took place in the USSR and the USA between the former
President of North-Holland Publishing Company, Drs. W.H. Wimmers, and
the General Editors.

The establishment of this series of books, which should become a
distinguished encyclopedia of condensed matter science, is not the only
important outcome of these discussions. A significant development is also
the emergence of a rather interesting and fruitful form of collaboration
among scholars from different countries. We are deeply convinced that such
international collaboration in the spheres of science and art, as well as other
socially useful spheres of human activity, will assist in the establishment of a
climate of confidence and peace. :

The General Editors of the Series,

V.M. Agranovich A.A. Maradudin

vill



PREFACE

This volume presents articles on the main kinds of surface excitation
supported by solids and liquids. In most cases, the excitations considered
are surface versions of excitations that also occur in the bulk material.
Surface excitations often display a righer variety of phenomena than their
bulk counterparts. Theyv can be much more difficult to observe experimen-
tally, and their theoretical treatment generally requires extensions of the-
methods used in the buik. For these reasons, the study of surface excitations
remains an advancing field of research in cases where the corresponding
bulk studies have become somewhat routine.

The articles presented in this volume span a wide range of interest. from
the important practical applications to device technology that have provided
a strong stimulus for work on surface vibrations. to the developments in
linear response theory that have been generated by the need to include
surfaces in the formalism. The majority of the articles are concerned with
the varieties of surface excitation that occur on solids. including vibrational,
magnetic, and electronic. The surface excitations on liquids are somewhat
less varied, but a final article on this case is included since there are
interesting similarities and contrasts with the corresponding excitations on
solids.

It should finallv be mentioned that we have not provided a separate
article on surface polaritons since this topic is very fully covered in Volume
1 of the present series (Surface Polaritons, edited by V.M. Agranovich and
D.L. Mills, North-Holland. 1982).

V.M. Agranovich R. Loudon
Moscow, USSR Colchester, UK
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1. Introduction

Linear response theory is well established as a technique for investigating
the spectrum of excitations in solids and fluids. The method essentially
involves calculating the response of a system to a small applied stimulus.
The results may be expressed in terms of response functions. which can be
directly related to quantum mechanical Green’s functions. As well as
providing information about the dispersion relation of any excitation, the
response functions enable one to deduce the power spectrum of the therm-
ally excited fluctuations in the excitation amplitude. This is achieved by
application of the fluctuation-dissipation theorem (or generalized Nyquist
theorem), which relates the mean square fluctuations in the excitation
amplitude to the imaginary part of an appropriately defined response
function. General accounts of the linear response method have been given,
for example, by Landau and Lifshitz (1969), Kubo (1966), Barker and
Loudon (1972) and Forster (1975).

The purpose of this chapter is to describe how linear response theory can
be applied to solids and fluids with restricted geometries. It is well known
that the existence of a surface can give rise to localized surface excitations
(e.g. surface magnons or surface phonons). These occur as a consequence of
the lack of translational invariance of the system in the direction perpendic- .
ular to the surface. The surface excitations are characterized by a wave-like
behavior of the excitation amplitude for _.rupagation parallel to the surface
(since the system is still translationaliy invariant in this direction), but the
amplitude decays with distance away from the surface. By contrast the bulk
excitations. which are the only excitations occurring in an effectively infinite
system, are wave-like in three dimensions, having a constant amplitude but
varying phase. The bulk excitations are also influenced by the presence of a
surface, since they can in general be reflected back from the surface and
they are required to satisfy boundary conditions at the surface. We shall
discuss how the linear response functions can be calculated for finite media,
incorporating the effects of surface excitations artd bulk excitations together
with their appropriate statistical weighting. This will be done for various
different types of excitation and for various geometries.

Before giving a formal derivation of linear response theory in the next
section, it is helpful to consider a simple mathematical example which will
illustrate some of the basic concepts. We examine the case of a damped
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harmonic oscillator in one dimension, where the displacement U describing
the motion of a mass m fluctuates, having a natural resonance frequency wj.
Also let f(t) be a fictitious force which acts on the system in such a way that
the interaction Hamiltonian has the simple form H, = — Uf(t). The driven
equation of motion for the oscillator is therefore

d*uU dU

ar? +F’E+w$l/' =f(1). (11)

m

where I' is a positive constant which describes the damping. We may
introduce Fourier transforms of the force and the particle displacement by

() :v/'x'/( 1) expliwt )dr (1.2a)

s

Clwd= [ UG explisndr. : (1.2b)-

The value £ of the displucement (averaged over an ensemble of oscillators
with random phases) s different from zero owing to the action of the
driving force f, and we may define a response function x(w) by

x(w)=Ulw)/flw). (1.3)
Using egs. (1.1) and (1.2) 1t 1s easily shown that

x(w) = — . (1.4)

m(wll)—w:—irw)

This complex quantity exhibits a resonant behavior at values of w equal to
+ w,- It satisfies the symmetry property (see Landau and Lifshitz 1969) that

x(—w)=x*(w), (1.5)

where the asterisk denotes complex conjugation. This relationship implies
that the real and imaginary parts of x(w) are respectively symmetric and
antisymmetric functions of w.

An important property of the response function x(w) is that it is closely
related to the absorption (or dissipation) of energy from the fictitious force
f(t) [see Landau and Lifshitz (1969) for a detailed discussion]. We can
illustrate this property by considering the damped harmonic oscillator with
a periodic driving term f(t) = f, cos «i. In this case it follows from previous
definitions that

U(r)=4f[x(wle ™ + x*(w)ee] (1.6)

v

From the form of the Hamiltorniar /7, describing the interaction of the force
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f(r) with the system we calculate the average dissipation W per unit time as

W= - U(I)d—{i(tﬂ
= iwfd [x*(@)e? ™ + x*(w) +x(@) = x(w)e ] (1.7)
When this is averaged over the period 27 /w the result can be expressed as
W=1flwImx(w). (1.8)

On physical grounds we must have W > 0, and the above result therefore
implies the stability condition that w Im x(w) > 0. It can easily be checked
that the response function x(w) of eq. (1.4) fulfils this requirement for any
real frequency w.

The Fourier components (|U|*), of the mean square displacement
provide the power spectrum of fluctuations for the damped harmonic
oscillator. The quantity {|U|?),, can be related to the dissipative properties
of the system and hence to the imaginary part of x(w). In the high-tempera-
ture “classical” limit of k37T > hw the connection is provided by

(U, = (kgT/mw) Im x(w), (kgT > hw), (1.9)

where kg is the Boltzmann constant and T is the absolute temperature. This
is the classical form of the so-called fluctuation-dissipation theorem, or
generalized Nyquist theorem. Its derivation has been discussed by many
authors [see, for example, Callen and Welton (1951), Landau and Lifshitz
(1969), MacDonald (1962), Kubo (1966), and references therein]. The more -
general quantum mechanical form of the fluctuation-dissipation theorem is
similar to eq. (1.9), but with (kg7 /7mw) replaced by another thermal factor
as we shall discuss in section 2. For our example of the damped harmonic
oscillator it follows from egs. (1.4) and (1.9) that

<|U|2>w=(k“r)( g

Tm 2 2y, 22l
wp—w?) +TIMw

(1.10)

For a lightly damped system (for which I' << w,) the right-hand side of eq.
(1.10) 1s effectively nonzero only for w close to w, or —w,. and this-enables
us to approximate by writing the result in a Lorentzian-like form as

, kT (I'/2)
<|U|->w=( ) / .
(wo— [w]) +(T'/2)°

| 2rmw;

(1.11)

The mean square value (JU|?) of the fluctuating displacement is obtained
from

QUIY = [ Uy, do. (1.12)
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When eq. (1.11) is substituted into eq. (1.12), and the integration over w is
performed, we find that (JU|*) = kyT/mw3, which is just the result ex-
pected according to the principle of equipartition of energy.

A physical situation in which the response function is well approximated
by the damped harmonic oscillator result of eq. (1.4) is the description of
long-wavelength optical lattice vibrations in a diatomic crystal. The variable
U would denote the relative ionic displacement for a particular polarization.
m would be an appropriately defined reduced ionic mass, and w, would
denote the frequency of the vibrations (independent of wavevector @ in the
long-wavelength limit). .o

In general, however, the response functions will deperd on position
labels (or alternatively on wavevector labels). For example, we could con-
sider applying a fictitious force (or stimulus) to the system at a point with
position vector x” and measuring the response at some other point x. The
appropriately defined response function would then depend on x and x’, as
well as the frequency w. For an effectively infinite system possessing
translational invariance the dependence on x and x" appears only through
the combination (x — x”). This enables a simple wavevector Fourier trans-
form to be defined for the response function, so that the Fourier compo-
nents depend on a single wavevector label Q. On the other hand, this will
not be the case for problems involving surfaces and interfaces. Owing to loss
of translational symmetry perpendicular to any surface, the spatial response
functions will depend on position labels x and x” individually, and a double
Fourier transform to a wavevector representation is needed involving two
labels Q and Q.

The outline of this chapter is as follows. In section 2 we summarize linear
response theory in a general form appropriate to systems either with or
without translational symmetry. We establish the correspondence between
linear response functions and the commutator Green's functions of quan-
tum mechanics (see Zubarev 1960). The fluctuation-dissipation theorem is
discussed, providing a simple connection between correlation functions and
their corresponding response functions (or Green’s functions). In particular
we emphasize the usefulness of the linear response approach for investigat-
ing surface problems, and we illustrate the procedure for this in section 2 by
means of a simple example. For the most part we shall consider only plane
surfaces, and we restrict attention to simple geometries. These include the
case of a semi-infinite medium (where only one surface need be considered),
and the parallel-sided slab or film of finite thickness (where there are two
surfaces). In sections 3 to 6 the general linear response theory is applied to
various types of surface excitations, including phonons, magnons, magneto-
static modes, and polaritons. Many of these topics will be considered in
greater detail in subsequent chapters of this book. In section 7 we give a
brief account of how surface response functions can be used to calculate
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physical quantities. e.g. light scattering {rom absorptive media, thermody-
namic properties, Kapitza resistance, etc. Section 8 contains a brief discus-
sion of some extensions of the method, including piezoelectric and magneto-
elastic media, spatial dispersion and surface roughness. The general conclu-
sions are given in section 9.

Other general techniques for evaluating Green’s functions, such as the
microscopic approaches based on Green’s function equations-of-motion or
diagrammatic perturbation theory (see Zubarev 1960, Abrikosov et al.
1963), can of course also be applied to surface problems. However, they lack
the direct physical appeal of linear response theory, which has the added
advantage of being particularly convenient for performing calculations
macroscopically (i.e. using a continuum approach for the solid or fluid). The
macroscopic approach is a convenient simplification when dealing with
long-wavelength excitations (where the wavelength is large compared with
the interatomic distances), since the calculation of the response function
(Green’s function) involves solving a differential equation rather than the
harder task of solving a set of inhomogeneous finite difference equations.
There are in fact relatively few microscopic calculations of the Green's
functions for surface problems, but as examples we mention the work of
‘Maradudin and Melngailis (1964) for phonons and Cottam (1976a, 1978)
for magnons in semi-infinite media. Another approach which has been
employed in investigating surface excitations is the Green'’s function match-
ing method of Garcia-Moliner and co-workers (see Garcia-Moliner 1977,
Garcia-Moliner and Flores 1979).

2. General Linear Response Theory

In this section we describe some of the formal aspects of linear response
theory. Some useful general references are Landau and Lifshitz (1969),
Kubo (1966), Forster (1975) and Stinchcombe (1978). We shall here be
concerned with developing the formalism in a way that is appropriate for
application to surface problems. Subsection 2.1 deals with the definitions of
response functions and Green’s functions and the relationship between
them, while subsection 2.2 is concerned with the fluctuation-dissipation
theorem and the evaluation of correlation functions. The general techniques
are illustrated in subsection 2.3 where we give a specific example of
calculating a response function for a semi-infinite medium. Some further
general properties, including symmetry relations, are then discussed in
subsection 2.4.

2.1. Response Functions and Green's Functions
Let f(r) denote a fictitious ficld (or generalized *“force”) which couples
linearly with a system variable represented by the operator U so that the
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interaction Hamiltonian H, is

H,=-Uf(1). (2.1)
For example, if U represents a magnetic dipole moment then the corre-
sponding f(7) would be a magnetic field. We suppose that at time ¢t = — o0

the system is in equilibrium, described by the Hamiltonian H, and the
corresponding density matrix p, = e ~#" /Tr(e "#"), where 8 = 1/kyT. The
perturbation H, is then increased adiabatically from zero, so that at a later
time ¢ the density matrix is changed to

p=p,+p. (2.2)

The equation of motion for the density matrix is (taking units such that
hA=1)

idp/dr=[Hy+ H,, py+p,]. (2.3)

Hence retaining only terms which are linear in the perturbing field f(¢) we
obtain '

idPl/d’=[H«Pl]_[U~P()]f(’)» (2.4)

where we have used the result that H, and p, commute. Eq. (2.4) has the
formal solution

p,=if_’ exp[iHy (1" = 1)][U. po] f(1) exp[ —iH, (2" = 1)] de’. (2.5)

This result for p,, correct to first order in f, enables us to calculate the
response of the system to the applied perturbation. This response can be
expressed in terms of the change V(¢) that it produces in the mean value of
any system variable denoted by the operator V. This is given by

V(t)="Tr(p,V). (2.6)

On substituting eq. (2.5) into eq. (2.6) and using the cyclic invariance
property of operators within the trace, we may express the linear response
as

1 -1 ’ ’ ’

v =if" ([v(e), u)Df() dr (2.7)
Here (...) =Tr(p,...) denotes a thermal average with respect to the
unperturbed system, and

V(f)z elll(,lVele”I , . (28)

is the operator V' in the Heisenberg picture, with a similar definition for
U(t"). If we now define a linear response function x(z — ") (or generalized



