) 75+ HOURSTO COMPLETE

Compilete Course

in Programming & Problem Solving

L

986116

™

Complete Course

in Programming & Problem Solving

Dr. Kenneth A. Lambert

Washington & Lee University

Dr. Martin Osborne

Western Washington University

VISIT US ON

www-s
S—

South-Western Educational Publishing
an International Thomson Publishing company I(’DP®

www.thomson.com

Cincinnati ® Albany, NY ® Belmont, CA ® Bonn ¢ Boston ¢ Detroit * Johannesburg ® London ® Madrid
Melbourne ® Mexico City ® New York ® Paris ¢ Singapore ® Tokyo ® Toronto ® Washington

To Nathaniel—Ken
To Tess—Martin

Library of Congress Cataloging-in-Publication Data
Lambert, Kenneth (Kenneth A.)
Java: complete course in programming and problem solving /
Kenneth A. Lambert, Martin Osborne.
p. cm.
Includes index.
ISBN 0-538-68707-X (hardbound). — ISBN 0-538-68711-8 (softcover)
1. Java (Computer program language) 1. Osborne, Martin
QA76.J38L355 2000

005.13'3—dc21 98-35332
CIp
Managing Editor: Carol Volz
Project Manager: Dave Lafferty
Consulting Editor:: Custom Editorial Productions, Inc.
Marketing Manager: Steve Wright & Larry Qualls
Design Coordinator: Mike Broussard
Production: Custom Editorial Productions, Inc.
Copyright © 2000

by SOUTH-WESTERN EDUCATIONAL PUBLISHING
Cincinnati, Ohio

ALL RIGHTS RESERVED

The text of this publication, or any part thereof, may not be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying, recording,
storage in an information retrieval system, or otherwise, without the prior written permis-
sion of the publisher.

The names of commercially available software mentioned herein are used for identification
purposes only and may be trademarks or registered trademarks of their respective owners.
South-Western Educational Publishing disclaims any affiliation, association, connection
with, sponsorship, or endorsement by such owners.

ISBN: 0-538-68707-X (hard cover)
0-538-68771-8 (soft cover)

12345DO0201 0099 98

Printed in the United States of America

1(T)p°

International Thomson Publishing

South-Western Educational Publishing is a division of International Thomson
Publishing, Inc. The ITP registered trademark is used under license.

BreezyGUI® is a registered trademark of Brooks/Cole Publishing, a division of International
Thomson Publishing, Inc.

(PREFACE

This text is intended for a first course in programming and problem solving. We want students to
focus on traditional topics in computer science, while writing object-oriented programs with graphical
user interfaces in Java. Thus, the text covers seven major aspects of computing:

1. Programming Basics. This deals with the basic ideas of problem solving with computers, prim-
itive data types, control structures, and methods.

2. Data and Information Processing. Fundamental data structures are discussed. These include
strings, arrays, and files.

3. Object-Oriented Programming. OOP is today’s dominant programming paradigm. All the essen-
tials of this subject are covered.

4. Graphical User Interfaces and Event-Driven Programming. Many texts at this level cling to
what has now become an antiquated mode of programming—character-based terminal I/O. The
reason is simple. GUIs and event-driven programming are too complex for beginning students. In
this text, we overcome the barrier of complexity in the manner explained below.

5. Software Development Life Cycle. Rather than isolate software development techniques in sep-
arate lessons, our text deals with them throughout in the context of numerous case studies.

6. Graphics. Our text explores problem solving with simple graphics. This includes drawing simple
shapes, representing data graphically, and implementing a rudimentary sketching program.

7. Networking. We introduce the programming of Web pages and applets.

Early, Easy GUIs with BreezyGUI®

Every CS1 Java text faces a dilemma: either do terminal I/O and look like a C++ text, or do
graphical user interfaces and overwhelm the reader with the details of Java’s Abstract Windowing
Toolkit. To overcome this dilemma, our text comes with a software package, BreezyGUI, which sim-
plifies the programming of graphical user interfaces. BreezyGUI insulates students from the complex
details of setting up window objects and managing interface events. Thus, students can use GUIs without
being overwhelmed and distracted from the basic business of software development—algorithm design
and factoring code into classes. Every example program in the first 12 lessons is GUI-based and uses
BreezyGUI. The mystery behind the BreezyGUI package is removed in the final lesson of the text,
where we introduce the details of Java’s Abstract Windowing Toolkit and delegation event model.

Focus on Traditional Computer
Science Topics

Many introductory Java books succumb to the temptation to focus on the popular features of Java for
Web-based programs, such as applets, threads, client/server network applications, and multimedia. We be-
lieve that these are actually advanced topics, which presuppose a principled introduction to the field. The
example programs in the first 11 lessons of our book are stand-alone Java applications. Lesson 12 intro-
duces HTML programming and applets, which allow Java programs to run in Web browsers. Because all of
our applications are GUI-based, the transition from applications to applets is straightforward.

Just-in-Time, Multiparadigm
Approach to Problem Solving

At one time there was a movement in computer science texts to introduce user-defined procedures
as early as possible. Many texts are now supplanting this approach with another one: introduce user-de-
fined classes as early as possible. Both approaches overlook the fact that procedures and classes are
mechanisms for structuring code, and as such they are best introduced when students start working with
problems that call for these organizational tools. Thus, the early lessons of our book (2 through 4) em-
phasize calculations, control constructs, and algorithms. User-defined methods arrive in Lesson 5 and
user-defined classes in Lesson 7. There they are needed, and their benefits are appreciated.

Case Studies and the Software Life Cycle

This text contains numerous case studies. These are complete Java programs, ranging from the
simple to the substantial. To emphasize the importance and reality of the software development life
cycle, case studies are always presented in the framework of a user request, analysis, design, and imple-
mentation, with well-defined tasks performed at each stage. Some case studies are carried through
several lessons or extended in end-of-lesson programming projects.

Alternative Paths Through the Text

We have organized the text to satisfy different time frames and topic preferences. We recommend
starting with the first three lessons, which provide CS background; explain how to run a first Java
program; and explore the basics of syntax, semantics, and debugging. After the first three lessons have
been covered, the following alternatives suggest themselves:

1. Those who cannot resist doing applets should skip to Lesson 12 and then return to Lesson 4.

2. Those who cannot resist doing graphics should do Lessons 4 and 5, then skip to Lesson 10, and
return to Lesson 6.

3. Those who cannot resist doing files should do Lessons 4—6 then skip to Lesson 11, and return to
Lesson 7.

4. Those who want to cover user-defined classes but omit inheritance should skip Lesson 9.

Of course, the best way to use this text is simply to go through it.

iv PREFACE

Reports of Errors and Updates

We have made every effort to produce an error-free text, although this cannot be guaranteed with
certainty. We assume full responsibility for all errors or omissions. Readers are encouraged to report
errors to klambert@wlu.edu. A listing of errata, should they be discovered, and other information about
the book will be posted on the author’s Web site, http://www.wlu.edu/~lambertk/hsjava/index.html.

Acknowledgments

VV e would like to take this opportunity to thank those who in some way contributed to the com-
pletion of this text. Several reviewers offered constructive comments during various phases of this
project. They include:

Mark Ciampa, Volunteer State Community College, Gallatin, TN
Fred Bartels, Rye Country Day School, Rye, NY

Derek Hodgkins, New Hampshire Community Technical College, Manchester, NH
Lily Hou, Carnegie-Mellon University, Pittsburgh, PA

Tsang-Ming Jiang, University of Alaska, Fairbanks, AK

Gail Miles, Lenoir-Rhyne College, Hickory, NC

Arland J. Richmond, Computer Learning Center, Somerville, MA
Christopher Starr, College of Charleston, Charleston, SC

Hoyt D. Warner, Western New England College, Springfield, MA
Lee Wittenberg, Kean University, Union, NJ

Winnie Yu, Southern Connecticut State University, New Haven, CT
John Zelle, Drake University, Des Moines, IA

Several other people deserve mention because, without their expertise, this text would not exist:

Cat Skintik of Custom Editorial Productions, Inc., Developmental Editor. Cat worked through not
only the text but also all of the ancillaries and program code, testing all of the programs, taking the
quizzes, and offering helpful commentary.

Jim Reidel, Valerie Brandenburg, and Cindy Lanning of Custom Editorial Productions, Inc., for the
production and layout of this book.

John Wills, Partnerships Manager. Among other things, John negotiated the agreement that resulted
in the compiler that is bundled with the text.

Dave Lafferty, Project Manager. Dave drew up the blueprints for a complete teaching package, from
text to workbook to instructor’s CD, and kept the project on target.

Carol Volz, Managing Editor. Carol focused our eyes on the need for this text and worked out the
arrangements for placing it in South-Western’s computer education listing.

Finally, we are grateful to our wives and children for giving us the time and support to develop this
text.

Kenneth A. Lambert
Martin Osborne

How to Use this Text

What makes a

good computer pro-
gramming text?
Sound pedagogy and
the most current,
complete materials.
That is what you will
find in the new Java:
Complete Course in
Programming and
Problem Solving. Not
only will you find an
inviting layout, but
also many features to
enhance learning.

USER-DEFINED
METHODS

OBJECTIVE

L
(@O Estimated Time: 3 hours

User-Defined Methods

Thc programs we have written so far have been short and simple, but soon we will tackle
problems of greater complexity. To manage the complexity, we can apply a strategy that has proven
successful in many areas of human endeavor—divide and conquer.

Objectives—
Objectives are listed
at the beginning of
each lesson, along
with a suggested
time for completion
of the lesson. This
allows you to look
ahead to what you
will be learning and
to pace your work.

FIGURE X-X
The proposed interface

Degrees Fahrenheit ! 212

100

Degrees Centigrade

The method Math.pow (x, y) raises x to the power of y. The following code segment displays the
first ten powers of 2 on separate lines in a text area named output:

Enhanced Screen
Shots—Screen shots
now come to life on
each page.

Program Code

Examples—Many
examples of program
code are included in

UNIT 2: METHODS, DATA TYPES. AND CLASSES

the text to illustrate
concepts under dis-
cussion.

Case Studies—Case
studies present Java
program solutions to
specific user
requests and show
the analysis, design,
and implementation
stages of the soft-
ware development
life cycle.

SCANS (Secretary’s
Commission on
Achieving Necessary
Skills)—The U.S.
Department of Labor
has identified the
school-to-careers
competencies. The
five workplace compe-
tencies (resources,
interpersonal skills,
information, sys-
tems, and technolo-
gy) and foundation
skills (basic skills,
thinking skills, and
personal qualities)
are identified in Case
Studies and Projects
throughout the text.
More information on
SCANS can be found
on the Electronic
Instructor.

Summary—At the
end of each lesson,
you will find a sum-
mary to help you
complete the end-of-
lesson activities.

Review Questions—
Review material at the
end of each lesson
and each unit enables
you to prepare for
assessment of the
content presented.

How to Use this Text

A Sales Table

5:

CASE STUDY

Request

Write a program that allows the user to enter the names and annual sales figures for any number
of salespeople. The program should display a formatted table of salespeople, their sales, and
their commissions (at 10% of the sales amount).

Summary

In this lesson, you learned:

B The modern computer age began in the late 1940s with the development of ENIAC. Business
computing became practical in the 1950s, and time-sharing computers advanced computing in
large organizations in the 1960s.

LESSON 1 REVIEW QUESTIONS

WRITTEN QUESTIONS

Write your answers to the following questions.
1. What are the three major hardware components of a computer?

2. Name three input devices.

LESSON ? PROJECT

1. Java’s Integer class defines public constants, MIN_VALUE and MAX_VALUE, that name the
minimum and maximum int values supported by the language. Thus, the expression
Integer.MAX_VALUE returns the maximum int value. The Double class defines similar
constants. Write a program that displays the values of these four constants.

CRITICAL THINKING ACTIVITY

You have an idea for a prifkram that will help the local pizza shop handle take-out orders. Your
friend suggests an interview wih the shop’s owner to discuss her user requirements before you get
started on the program. Explain hy this is a good suggestion, and list the questions you would ask the
owner to help you determine the hiser requirements.

UNIT 1 APPLICATIONS

1. Light travels at 3 * 10® meters|per second. A light-year
in 1 year. Write a program that|calculates and displays the

he distance a light beam would travel
ue of a light-year.

99

Lesson Projects— Critical Thinking End-of-Unit
End-of-lesson hands-

on application of
what has been
learned in the lesson
allows you to actually
apply the techniques
covered.

Activity—Each les-
son and each unit

review gives you an
opportunity to apply
creative analysis to

situations presented.

Applications—End-of-
unit hands-on appli-
cations of concepts
learned in the unit
provides opportunity
for a comprehensive
review.

Explore the
Flavor of Java!

With these exciting new products
tfrom South-Western!

Our new Java programming books offer everything from beginning, to intermediate,
to advanced courses to meet your programming needs.

© NEW! Java Complete Course in Programming and Problem Solving by Lambert and Osborne
is the most comprehensive instructional text available for learning Java. It
contains 75+ hours of instruction on the most widely used beginning-through-
advanced features of Java. Covers Java for both Windows and Macintosh.

Student book, hard cover 0-538-68707-X
Student text-workbook/data CD-ROM package, soft cover 0-538-68708-8
Activities Workbook 0-538-68710-X
Electronic Instructor CD-ROM package 0-538-68709-6

o NEW! Java: Introduction to Programming by Knowlton covers the beginning-
through-intermediate features of Java in 35+ hours of instruction. The text is
available in hard or soft cover and is for the Windows version of Java only.

Student book, hard cover 0-538-68565-4
Student book/3.5” template disk package, soft cover 0-538-68772-X
Activities Workbook 0-538-68571-9
Electronic Instructor CD-ROM package 0-538-68557-3
Student book, hard cover/Microsoft Visual J++ package 0-538-68774-6
Student book/3.5” template disk package, soft cover 0-538-68773-8

with Microsoft Visual J++ package

® NEW! Java: Programming Basics for the Internet by Barksdale and Knowlton, et al., gives
the user a quick introduction to the beginning-through-advanced features of Java. It
contains 15+ hours of instruction; the emphasis is on applets and activities.

Student Text-Workbook 0-538-68012-1
Student Text-Workbook/Microsoft Visual J++ package 0-538-68564-6
Instructor’s Manual (online) 0-538-68013-X

A new feature available for these products is the Electronic Instructor, which
includes a printed Instructor’s manual and a CD-ROM. The CD-ROM contains
tests, lesson plans, all data solutions files, and more! Also, ask about our
ProgramPaks for compiler software bundles!

For information call 1-800-354-9706.

S

South-Western
Educational Publishing

Join Us On the Internet
www.swep.com

.

.
o
-

ol

St

.

.

L
o

o

i

.
o

.
.

L
L
0

-
-

b
o
o

CONTENTS)

MGETTING STARTED WITH JAVA

2 Lesson 1: A Brief History of Computer

15

40

Programming
History of Computers 2
Computer Architecture 3
Programming Languages 5
Software Development Process 6
Object-Oriented Programming 9
CS Capsule: The ACM Code of Ethics and

Intellectual Property 11
Summary 13
Lesson 2: A First Java Program
Why Java? 15
The Java Virtual Machine and Byte Code 16
Case Study: Request, Analysis, and Design

for the First Program 16
Writing the Program 18
Language Elements 19
Interpreting the Program 20
Overview of Editing, Compiling, and

Running a Program 24
Creating and Running the First Program 25
Formatting a Program and Comments 28
Programming Errors 29
Illustration of Syntax Errors 30
Illustration of Run-Time Errors 31
Ilustration of Logic Errors 33
Debugging 34
Applets and Stand-alone Programs 35
CS Capsule: Intrusive Hacking and Viruses 35
Summary 36
Lesson 3: Java Basics
Case Study 1: Area of a Circle 40
Case Study 2: Income Tax Calculator 42

67

94

CS Capsule: Binary Representation of

Information and Computer Memory 43
Numeric Data Types and Numeric Literals 47
Variables 48
Naming Other User-Defined Symbols 49
Expressions 49
Mixed-Mode Arithmetic 51
Tester Programs 52
BreezyGUI: Layout, Objects, and Methods 53
Strings 57
Case Study 3: Vital Statistics 61
Design, Testing, and Debugging Hints 62
Summary 63
Lesson 4: Control Statements
A Visit to the Farm 67
The if and if-else Statements 68
Relational Operators and Their Precedence 70
Case Study 1: Circle Area and Radius 71
The while Statement 73
Case Study 2: Count the Divisors 77
Case Study 3: Fibonacci Numbers 78
Nested if Statements 80
Data Validation and Robust Programs 83
Case Study 4: Making

CircleAreaAndRadius Robust 83
BreezyGUI: Text Areas and Formatted

Output 84
Case Study 5: A Sales Table 87
CS Capsule: Artificial Intelligence,

Robots, and Softbots 89
Design, Testing, and Debugging Hints 89
Summary 90

Unit 1 Review

MMETHODS, DATA TYPES, AND CLASSES

97

Lesson 5: User-Defined Methods

User-Defined Methods

98

Parameters and Return Values
Scope and Lifetime of Variables

101
104

CONTENTS

Preconditions and Postconditions 106 156 Lesson 7: User-Defined Classes

CS Capsule: Function-Oriented Overview of Classes and Objects 156
Programming 107 A student Class 157
Case Study: Tally Grades 108 Editing, Compiling, and Testing the
Finding the Location of Run-Time Errors 116 Student Class 164
Other Implementation Strategies 117 BreezyGUI: Menus and the Title 165
Recursion 117 Case Study: Student Test Scores 166
Design, Testing, and Debugging Hints 120 The Static Modifier 172
Summary 121 Restriction on the Use of the messageBox
Method 175
126 Lesson 6: More Operators, Control Constietors 175
Statements, and Data Types Primitive Types, Reference Types, and
Operators 126 the null Value 177
Control Statements 132 Copying Objects 178
The Math Class 136 Comparing Objects for Equality 179
Data Types 137 CS Capsule: Reliability of Software
Constants 142 Systems 180
Case Study 1: Metric Conversion 143 Design, Testing, and Debugging Hints 181
Case Study 2: Dice Rolling 144 Summary 181
Strings Revisited 145
Case Study 3: Palindromes 149 185 Unit 2 Review
CS Capsule: Data Encryption 151
Design, Testing, and Debugging Hints 151
Summary 152

ARRAYS, INHERITANCE, AND GRAPHICS 189

190 Lesson 8: Arrays, Searching, Case Study: The Painter’s Friend 260
and Sorting Object-Oriented Analysis and Design
Arrays 190 Guidelines 270
Parallel Arrays 200 Summary 271
;v:rc;;lzlglznﬁzgil)grrays gg; 273 Lesson 10: Simple Graphics
BreezyGUI: Checkboxes, Radio Buttons, The Conc}eiptual Framework for Computer
Scrolling Lists, and Choice Lists 206 Graphics 273
Case Study 1: Polynomial Evaluator 214 Case Study 1: Drawing Text at Different
Case Study 2: Student Test Scores Again 221 Positions 278
The Model/View Pattern 228 Color 280
Design, Testing, and Debugging Hints 235 Tracking the Mouse _ 281
Summary 236 CasePStudy 2: A Simple Sketching -
rogram
242 Lesson 9: Inheritance, Abstract Transient and Refreshable Images 283
Classes, and Polymorphism Defining and Using a Geometric Class 284
Introduction a2 Case Study 3: Dragging Circles 286
! ; ; Text Properties 291
Implementing a Simple Shape Hierarchy 243 Design, Testing, and Debugging Hints 292
Using the Shape Classes 249 Summa;ry ’ 292
Extending the Shape Hierarchy 250
Aurrays of Shapes 253 296 unit 3 Review
Shapes as Parameters and Return Values 255
An Employee Hierarchy 258

b

FILES, WEB-BASED PROGRAMMING, AND AWT 299

300

330

357

Lesson 11: Files
Secondary Storage 300
File Classes 301
File Input 302
Case Study 1: A Text Analyzer 308
File Output 311
Case Study 2: Employees and Payroll 312
Data Input and Output Streams 319
Serialization and Object Streams 321
Terminal Input and Output 323
File Dialogs 324
CS Capsule: Programming Language

Translation 326
Design, Testing, and Debugging Hints 327
Summary 327
Lesson 12: Introduction to HTML
and Applets
Hypertext, Hypermedia, and the World

Wide Web 330
Hypertext Markup Language 331
Simple Text Elements 335
Character-Level Formatting 336
Lists 337
Linking to Other Documents 340
Multimedia 342
Tables 344
Applets 346
Case Study 1: Fahrenheit to Centigrade

as an Applet 347
Compiling and Running an Applet 349
Differences Between Applets and

Applications 350
Case Study 2: A Game of Tic-Tac-Toe 350
Design, Testing, and Debugging Hints 355
Summary 355
Lesson 13: The Abstract
Windowing Toolkit
The AWT Philosophy 357
Conversion Program Implemented with

GBFrame 358

401

404

428

429

431

432

435

437

Conversion Program Implemented
with AWT

GUI Components

Layouts

All About Events

Dialogs

The Model/View/Controller Pattern

Case Study: A Color Meter Application

Applets and the AWT

Summary

Unit 4 Review

360
368
372
382
388
391
392
397
398

Appendix A: Java Resources
and Environments

Appendix B: Reserved Words

Appendix C: Operator Precedence

Appendix D: ASCII Character Set

Appendix E: Number Systems

Appendix F: Java Exception Handling

Appendix G: Java Packages

438 Appendix H: BreezyGUI

443

456

Glossary

Index

CONTENTS

e

Unit 1 Estimated Time: 13.5 hours

A BRIEF HISTORY
OF COMPUTER PROGRAMMING

OBJECTIVES

AR R

History of Computers

ENIAC, built in the late 1940s, was one of the world’s first computers. It was a large, stand-alone
machine that filled a room and used more electricity than all the houses on an average city block. ENIAC
contained hundreds of miles of wire and thousands of heat-producing vacuum tubes. The mean time between
failures was less than an hour, yet because of its fantastic speed, when compared to hand-operated electro-
mechanical calculators, it was immensely useful. To read more about the ENIAC and see photos of early
computers, contact the following site by using your Web browser: http:/ftp.arl.mil/ftp/historic-computers.

In the early 1950s, IBM sold its first business computer. At the time, analysts estimated that the
world would never need more than ten such machines, yet its awesome computational power was a mere
17200 of the typical 200-megahertz Pentium personal computer purchased for about $1000 in 1998.

The first computers could perform only a single task at a time. Input and output were handled by
such primitive means as switches, punch cards, and paper tape.

In the 1960s, time-sharing computers, costing hundreds of thousands and even millions of dollars,
became popular at organizations large enough to afford them. Even back then, computers were so much
faster that 30 people could work on such a computer simultaneously without loss of computing power.
Each person sat at a Teletype console connected by wire to the computer. By making a connection through
the telephone system, Teletype consoles could be placed at a great distance from the computer. The
Teletype was a primitive device by today’s standards. It looked like an electric typewriter with a large roll
of paper attached. Keystrokes entered at the keyboard were transmitted to the computer, which then
echoed them back on the roll of paper. Output from the computer’s programs was also printed on this roll.

2 UNIT 1: GETTING STARTED WITH JAVA

In the 1970s, people began to see the advantage of connecting computers in networks, and the
wonders of e-mail and file transfers were born.

In the 1980s, personal computers (PCs) appeared in great numbers. Soon thereafter, local area
networks of interconnected PCs became popular. These networks allowed a local group of PCs to commu-
nicate and share such resources as disk drives and printers with each other and with large, centralized
multiuser computers.

The 1990s have seen an explosion in computer use, and the hundreds of millions of computers now
appearing on every desktop and in almost every home can be connected through the Internet (Figure 1-1),
a fact known by every hacker and feared by every bank and government installation.

And the common language of all these computers is fast becoming Java.

FIGURE 1-1
Computers are interconnected
through the Internet

Computer Architecture

Modern computers can be viewed as machines that process information. Information processors
consist of two primary components: hardware and software. Hardware consists of the physical devices
that you see on your desktop. Software consists of the programs that enable human beings to use the
hardware.

Computer Hardware |
A general-purpose computer consists of many interconnected and interacting parts. Figure 1-2
shows the hardware components of a typical PC.

FIGURE 1-2
A typical hardware setup

Speakers\
/ _______ Printer
‘\ @
>
Monitor

/7 CPU \ Hard Disk

O

Mouse CD-ROM
Memory ~ [o
0O oooo
g
Keyboard i Diskette
User Interface Modem Secondary Storage
Rest of the World

Input devices send information to the computer for processing. Examples of input devices include:
A keyboard for entering text.
A microphone for entering sound.

A mouse for direct manipulation of images on the monitor screen.

A modem for entering information from other computers.

Output devices display information in a form that people can understand. Examples of output
devices include:

B A monitor for displaying text and images on a screen.
B Speakers for emitting sound.
B A printer for producing hard copies of text and images.

Secondary storage devices store information that must be retained on a permanent or semiper-
manent basis. Examples are disks and CD-ROM:s.

A computer uses two devices to process information: memory and a central processing unit (CPU).
The memory (sometimes also called main memory or primary memory) consists of a large number of
cells that can contain information. Each cell is an electronic device that can be in one of two states, either
on or off. A given pattern of these states can be used to represent any information whatsoever, such as
numbers, text, images, and sound.

Some of the information stored in memory represents data, or the information to be processed. The
rest of the information stored in memory represents instructions, which tell the computer how to process
the data. In other words, both the program (the instructions) and the information to be processed (the
data) are stored as patterns of electronic states in memory.

4 UNIT 1: GETTING STARTED WITH JAVA

