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[ Preface

Fuel blending with solid fuels is becoming an increasingly important process
for electricity generation companies and installations, as well as for process
industries that fire boilers and kilns to drive production of goods such as pulp
and paper, expanded aggregates, and cement (and that periodically generate
electricity in cogeneration applications). Many economic and environmental
forces have combined to make fuel blending increasingly attractive. Blending
low-sulfur/low-nitrogen subbituminous coals with traditional eastern and
midwestern bituminous coals provides an inexpensive means for reducing
airborne emissions and generating electricity. At the same time, maintaining
a greater than 30% proportion of eastern or midwestern coal in the blend helps
oxidize any mercury found in the coal. Oxidation of the mercury facilitates its
capture in a fabric filter facility or an electrostatic precipitator.

Fuel blending can achieve a multiplicity of purposes. For example, it can be
used to increase fuel reactivity, reduce fuel costs, address deposition or
corrosion issues, reduce certain types of airborne emissions, address the capture
of certain pollutants, and reduce the concentration of certain pollutants (e.g.,
chlorine, mercury, arsenic). Typically, fuel blending is thought of in terms of
coal, but it also includes other materials from petroleum coke to biomass with
coal or with another fuel type.

Blending without sufficient investigation and analysis can easily exacerbate
problems such as slagging and fouling and corrosion. The behavior of inorganic
constituents, and some organic constituents, is not necessarily linear with
blends. Surprises—some favorable and many unfavorable—can occur with
blending when insufficient data and analyses are used.

Blending techniques can also influence outcomes. Basic blending is done by
the bucketful—a bucket of this and a bucket of that (or a slug of this and a slug
of that). We have seen this approach at coal tipples, power plants, and pulp
mills. In very carefully designed programs, bucket blending can work well.
Transfer points can function as mixing stations and can facilitate relatively
homogeneous blends. Frequently, however, this approach does not work, and
the boiler “sees” a slug of this and a slug of that. Silos that rathole—that is,
operate on a “first-in, first-out” basis—only make the problem worse. When
metering conveyors are used, blending is more precise, and swings in fuel
quality are basically eliminated. Metering conveyor systems can be elegant or
basic, depending on the installation. With them, two-way blends are easily
accomplished, and many can achieve three-way blends.

More and more blending involves weigh-belt feeders, metering conveyors,
and positive controls leading to reproducible results. Such systems can again be
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simple or highly sophisticated, depending on the fuel yard and its design. These
systems may involve sophisticated computer tracking and controls or may only
consist of programmable logic controllers and dial-in controls. Variations
appear to revolve around the extent to which automation replaces human
activity in the fuel yard. The degree of sophistication also depends on how
aggressive a plant is in controlling the blend and the outcome. Some plants are
content to fire a single, constant blend of two or more fuels. Others vary the
blend to respond to market conditions and the natural variability in such solid
fuels as ranks of coal, biomass fuels, and numerous waste fuels.

The authors of this book have extensive experience in fuel blending. We
have managed the fuels and combustion process for power plants and have
consulted on fuels and combustion issues for utilities, process industries, and
incinerators. Further, we have led research efforts in evaluating blends and
blending processes for utilities and industries, EPRI, the U.S. Department of
Energy, and numerous other organizations. These professional activities have
led to the development of many observations and ideas that are presented here.
This book reflects our collective experience with numerous organizations
involved in the production and use of the vast array of solid fuels as well as our
participation in professional societies and conferences dedicated to advancing
the understanding of these materials and their utilization.

This book provides information on the issues of solid fuel blending and the
principles, practices, and problems associated with it. Chapter 2 deals with the
fundamentals of fuel blending, examining the blending of coal on coal, biomass
on coal, petroleum coke on coal, and others. Chapter 3 looks at the blending of
coals—the chemistry of blending, blending systems, and critical issues.

Chapter 4 focuses on biomass cofiring with coal—the fundamentals of
biomass cofiring, its chemistry, and associated systems. It also looks at specific
case studies. Chapter 5 studies the aspects of waste fuel blending with
coal—for example, tired-derived fuel, petroleum coke, and waste plastics and
papers. Chapter 6 looks at the environmental aspects of fuel blending, and
Chapter 7 considers various aspects of modeling associated with it. Chapter 8
focuses on the institutional aspects of fuel blending.
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CChapter 1 )—

Introduction to Fuel Blending

1.1. OVERVIEW

The blending of two or more solid fuels involves combining the desired
materials together in a careful, reproducible manner. This book deals with solid
fuel blending that is controllable and reproducible; it focuses on systems where
controlled conveyers, weigh belt feeders, and other means are used to provide
a consistent feed to the combustion or gasification system. Blending, as dis-
cussed in this text, requires knowledge of what is being blended, why it is being
blended, and the expected outcome of the blending process.

1.2. FUEL BLENDING FOR SOLID FUELS

Blending for solid fuels involves producing a reasonably homogeneous mixture
of the two or more solids to be fired in a boiler. These solids may be coals of the
same or similar ranks; coals of dissimilar ranks; coals with biomass fuels such
as wood, wood waste, herbaceous crops, and crop wastes; fecal matter from
animals; and industrial residues from the processing of biomass. Blends may
also include coals and a range of industrial materials and residues, including
petroleum cokes of one or another type, by-product aromatic carboxylic acid
(BACA), coal wastes such as culm or gob, municipal solid waste-derived fuels
(e.g., refuse-derived fuel, waste paper, waste plastics), tire-derived fuel,
selected hazardous wastes, and many more. Blending is limited only by the
ingenuity of the engineers and by the regulatory environment [1].

1.2.1. Blending System Considerations

From the perspective of fuel blending mechanical system fundamentals, we
have these things to consider:

1. Where in the overall process scheme should blending occur?

2. What types of mechanical systems are available to accomplish blending?
3. What type of blending controls should exist?

4. What modifications must be made to plant equipment?

Following this discussion, the overall impacts or consequences of blending can
be considered. It is important to note that the discussion here is an overview.

Solid Fuel Blendi Principles, Practi and Problems
Copyright © 2012 Elsevier Inc. All rights reserved. 1




Chapter | 1 Introduction to Fuel Blending

To the extent that specific fuel blending influences these questions, more detail
will be presented in subsequent chapters.

1.2.2. Where Blending Can Occur

Typically, blending occurs in the fuel yard of a utility power plant or industrial
boiler; however, it can occur in an off-site fuel management facility with the
blend being shipped to the power plant or industry. It can occur as part of the
fuel handling process: in the feed system conveying fuel to the burners or other
energy recovery and production systems (e.g., combustion or gasification
systems). It can occur in the energy production equipment (e.g., the pulverized
coal boiler) depending on the system design. In this case certain pulverizers are
set up to handle one fuel, and others are set up to handle another fuel—the
blend fuel(s).

Blending of different fuels depends on the fuels to be blended. At one
extreme a utility or industry can purchase preblended fuel from a transloading
facility or other similar operation. Many eastern tipples, such as Tanoma Coal
Company, provide blends of fuel to their customers in order to meet specifi-
cations. When biomass cofiring was tested at the Shawville, Pennsylvania,
generating station of (then) GPU Genco (now Reliant Energy), Tanoma Coal
blended the woody biomass forms with the coal to meet the objectives of the
blend process [2, 3]. When the Tennessee Valley Authority (TVA) tested firing
up to 20% petroleum coke with coal at its Widows Creek Fossil Plant, the blend
was prepared by the BRT facility in Kentucky and shipped on the river to the
power plant. Other utilities and manufacturing industries have investigated this
option as well [4-6].

Purchasing preblended fuel has several advantages. No capital investment is
required at the plant site. In reality the use of a blend is transparent to the power
plant. The blend is handled like a single coal. This also requires little if any
change in operations and maintenance practices. Purchasing preblended fuel,
however, also has several disadvantages: The system is rigid, and the blend
cannot be changed at the plant to respond to power plant needs or the conse-
quences of in-seam variability of coal. If the blend is not desirable (e.g., if the
blend causes slagging, fouling, or corrosion), the electricity generating plant or
manufacturing facility must burn it in any event and probably must suffer
a derate in the process. It may also experience elevated operations and main-
tenance costs in the process.

Probably the most common form of blending involves mixing two or more
fuels in predetermined blends in the fuel yard. This can be accomplished in any
number of ways, as will be discussed subsequently. This is the approach taken
at the Monroe Power Plant of DTE Energy (Figure 1.1), the Limestone
Generating Station of Texas Genco, and numerous other utilities and industries
blending various types of coal of dissimilar rank. TVA took this approach
testing blends of petroleum coke and coal at its Paradise Fossil Plant and blends



1.2. Fuel Blending for Solid Fuels

FIGURE 1.1  Aerial view of the Monroe Power Plant of DTE Energy. Note the coal yard at the back
of the site. This coal yard contains the $400 million blending facility constructed such that three coals
can be fed to the boiler in varying proportions to meet operational requirements. Source: [10].

of tire-derived fuel with sawdust and coal at its Allen Fossil Plant [3—5]. This
approach was taken during the testing of petroleum coke and wood waste
cofiring at the Bailly Generating Station of NiSources [7, 8]. This approach is
limited to coal—coal blends, coal/petroleum coke blends, and cofiring with
woody biomass, such as what was done at Plant Hammond of Southern
Company [9], as well as at the Allen Fossil Plant and the Bailly Generating
Station. This approach cannot be used with blends of coal and agricultural
products such as switchgrass or corn stover.

The advantages of this approach include the ability to adjust the fuel blend
to utilize varying properties of the fuel—both good and bad. Also, depending
on the plant information and control system, the on-site blending can be used to
minimize the risks associated with slagging, fouling, and deposition. Fuel
characteristics leading to those conditions and fuel characteristics leading to
unacceptable levels of pollution can be addressed by blending as well. The
blending process can move the fuel characteristics away from the most severe
conditions, depending on the fuels available.

This blending approach, however, has limitations. It can be very capital
intensive—for example, the DTE Energy blending facility had a capital cost of
$400 million [10]. Other facilities such as the Bailly Generating Station blending
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FIGURE 1.2 The on-site blending facility constructed at Bailly Generating Station for testing
purposes. Note that this is a labor-intensive system. Source: [7].

system, shown in Figure 1.2, cost only $1.2 million. However, the Bailly
blending system is more labor intensive, requiring two additional operating
persons just to run the blending system [3, 7]. Maintenance must be vigorously
pursued in order to preserve the accuracy and consistency of the blending;
otherwise, it is not effective. This is discussed more extensively in Chapters 2
and 3. At the extreme is bucket blending—using two front-end loaders to build
piles of the blends. This can result in blends that are “a slug of this and a slug of
that,” and these blends do not maximize the desired benefits of good blending.

On-site blending introduces another potential problem: preferential
grinding or pulverization in the mills. When introducing two coals to a mill, the
pulverizer will grind the softer (higher-HGI) coal more completely than the
harder coal. For example, Monroe Power Plant was using a blend of 70%
Powder River Basin (PRB)/30% Central Appalachian (CA) bituminous coal.
Tests showed that the >50 mesh cut of the pulverized material was 70% CA
bituminous coal [10]. The >200 mesh, >400 mesh, and residual products were
where the PRB coal was concentrated. This preferential grinding—preparing
the softer, more easily pulverized coal more thoroughly than the harder
coal—is a common experience in blending operations. This is discussed more
extensively in Chapter 3.

A third approach to blending is blending in the furnace or boiler itself. The
various fuels are prepared separately and introduced into the boiler separately.
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This has been used with dissimilar coals such as PRB subbituminous coal and
lignite at the Limestone Generating Station. It is the preferred method for
cofiring biomass with coal in pulverized coal boilers and is required when
cofiring agricultural products such as switchgrass with coal, as has been
demonstrated at Plant Gadsden of Southern Company, Ottumwa Generating
Station of Alliant Energy, and Blount St. Station of Madison Gas & Electric [3].

Agricultural materials, such as switchgrass, do not lend themselves to blending
with coal in the coal yard. This approach has been in existence for a long time and
has been used in stoker firing as well as pulverized coal (PC) firing [11]. Detroit
Stoker developed a fuel feeding system with a paddle wheel for coal stoker firing
and a windswept spout for wood waste firing—simultaneously—in the large
stoker-fired boilers of the pulp and paper industry [11].

This approach is also being used by Foster Wheeler in the design and
construction of two 300-MWe circulating fluidized bed (CFB) boilers being
supplied to Dominion Energy. These boilers will be fired with up to 20% wood
waste and 80% coal. The mixing of wood waste with coal will occur in the CFB
itself, not in the fuel yard. This approach was used in one cyclone installation:
the Allen generating station of Northern States Power. Dry, finely divided
sawdust from the adjacent Andersen Windows plant was fired in the secondary
air plenum of 3 of the 12 cyclone barrels in a manner similar to the means for
firing natural gas in cyclone boilers.

There are distinct advantages to this form of blending. If two coals are
blended using this approach in a PC boiler, then the pulverizers can be set to
the individual coals being fired. If biomass is being fired with coal, then the
coal delivery system is not impacted. If wet coal is received and a derate is
to be taken, the addition of the biomass can minimize that derate, depending
on the specific design. It should be noted, however, that this blending
approach is more suited to tangentially fired PC boilers than wall-fired
boilers. Tangentially fired PC boilers have a single fireball, whereas wall-
fired boilers have distinct flames from each burner; there is less mixing of
the fuel and flame in such installations. A disadvantage of this approach is
that some of the chemistry benefits of blending are not achieved with in-
furnace blending.

Therefore, numerous locations can be used for blending different fuels
being fired in a single boiler. Choice of the optimal location depends on the
fuels being burned, the firing method, and the approach of the electric utility or
process industry.

1.3. OBJECTIVES FOR BLENDING

Blending is designed to meet certain overall objectives: economic, environ-
mental, and technical. The economic objectives are always tied to producing
the useful energy product at the lowest cost. This may be process steam, where
cost is expressed in $ per 107 Ib of useful steam; electricity, where cost is



