POUCHER'S Perfumes, Cosmetics and Soaps

VOLUME 1

The Raw Materials of Perfumery

NINTH EDITION

W.A. Poucher

Edited and revised by A.J. Jouhar

Poucher's Perfumes, Cosmetics and Soaps – Volume 1

The Raw Materials of Perfumery

Ninth edition

W.A. Poucher

Edited and revised by A.J. Jouhar

Chief Executive Information Transfer International

Chapman & Hall, 2-6 Boundary Row, London SE1 8HN, UK

Chapman & Hall, 29 West 35th Street, New York NY10001, USA

Chapman & Hall Japan, Thomson Publishing Japan, Hirakawacho Nemoto Building, 7F, 1-7-11 Hirakawa-cho, Chiyoda-ku, Tokyo 102, Japan

Chapman & Hall Australia, Thomas Nelson Australia, 102 Dodds Street, South Melbourne, Victoria 3205, Australia

Chapman & Hall India, R. Seshadri, 32 Second Main Road, CIT East, Madras 600 035, India

First edition 1923 Ninth edition 1991

© 1991 Chapman & Hall

Typeset in 10/11 Sabon by Thomson Press (India) Ltd, New Delhi Printed in Great Britain by T.J. Press (Padstow) Ltd, Padstow, Cornwall

ISBN 0 412 27340 3

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication data

Poucher, W.A. (William Arthur)

The raw materials of perfumery / W.A. Poucher; edited and revised by A.J. Jouhar.—9th ed.

p. cm.—(Poucher's perfumes, cosmetics, and soaps; v. 1) ISBN 0-412-27340-3

1. Perfumes—Dictionaries. I. Jouhar, A.J. (Akbar Jan)

II. Title. III. Series: Poucher, W.A. (William Arthur). Perfumes, cosmetics, and soaps; v. 1.

TP983.P723 vol. 1 1991

668'.5s-dc19

[668'.54'0321]

88-25755

CIP

Printed on permanent acid-free text paper, manufactured in accordance with the proposed ANSI/NISO Z 39.48-199X and ANSI Z 39.48-1984

Poucher's Perfumes, Cosmetics and Soaps – Volume 1
The Raw Materials of Perfumery

Preface

This classic work by Poucher, first published in 1923, was last produced in three volumes titled, respectively *The Raw Materials of Perfumery* (seventh edition, 1974), *The Production, Manufacture and Application of Perfumes* (eighth edition, 1974) and *Modern Cosmetics* (eighth edition, 1974). Its popularity is well demonstrated by there having been three reprints of these editions in 1976, 1979 and 1984, respectively.

The history of events can be traced by reference to the prefaces to earlier editions and those interested should study these with care since they give a fascinating insight into developments in the subject fields covered by *Poucher's Perfumes*, *Cosmetics*

and Soaps over the years. It is not proposed to provide a resume here.

In this Volume I, the current edition attempts to provide data about raw materials in a more formalized way than before, so that not only the history of some compounds can be checked, but also so that useful reference information can be obtained. It is particularly relevant to do this, since it is not always easy to be certain of nomenclature. Moreover, as we move towards 'ingredient labelling' (a trend not welcomed by some), a high level of uniformity will be needed. Whether this will come from adoption of CTFA terminology, use of CAS numbers or some other system is not clear. Where possible, such data have been included so that readers may identify materials more readily. Where given, CAS numbers are located in the top right-hand corner of each entry.

For many of the compounds listed several alternative names are in use, some of which from the chemist's point of view are either inadequate, ambiguous or occasionally actually misleading. In this edition the compounds have been listed under names which are considered to be chemically satisfactory and which, at the same time, should be reasonably familiar to perfumers; they do not necessarily contain full information as to the structure of the compounds and they make free use of widely accepted trivial names. In most of the entries this is associated with a systematic name which defines the chemical structure, while synonyms which are

in use, though sometimes chemically unsatisfactory, also are listed.

Prefixes denoting structural features such as *n*-, *iso*, *cis*-, *trans*-, *o*-, *m*-, *p*- etc. are disregarded in the alphabetical listing. Where appropriate, however, a second entry may be made in the alphabetical position corresponding to the prefix with a cross-reference to the main entry. Prefixes denoting number (for which Greek-derived mono-, di-, tri-, etc. are used rather than their Latin equivalents) are, on the other hand, regarded as forming an integral part of the word and are thus of alphabetical significance. Subsidiary entries with cross-references are made where this is useful.

The systematic naming follows established chemical practice but as this is not completely uniform the following is a brief account of the principles adopted.

Acyclic compounds are usually named as derivatives of the longest unbranched hydrocarbon chain contained within their structure. The carbon atoms in the chain are numbered from one end; if one of the terminal atoms carries a functional group, this is usually designated '1'. The positions of functional groups and other structural

features are indicated by the appropriate numeral immediately preceding the verbal element which designates it; thus, *iso*-propanol is named 'propan-2-ol' rather than '2-propanol' or 'propanol-2'. In the case of double and triple bonds, denoted by the elements '-en-' and '-yn-', the lower number of the pair of carbon atoms between which the bond exists is used. The names of normal carboxylic acids are derived from those of the normal hydrocarbons having the same number of carbon atoms by replacing the final 'e' by '-oic acid', e.g. 'n-pentanoic acid' (=n-valeric acid); exceptions are acetic and formic acids. In carboxylic acids and aldehydes, the carbonyl carbon is assigned the numeral '1', e.g. lactic acid becomes '2-hydroxypropanoic acid'.

In disubstituted benzene derivatives, the familiar prefixes o-, m- and p- are used to indicate the relative positions of the substituents; with three or more substituents, however, numbers are used to avoid ambiguity. In polycyclic and heterocyclic compounds, the rings are numbered according to current Chemical Abstracts practice.

Melting and boiling points are given in degrees Centigrade. Unless otherwise specified, the boiling points are at atmospheric pressure (760 mmHg); for those determined at other pressures the latter are given in mmHg.

It must be noted that neither the editor nor the publishers can be held responsible for any consequences arising from any errors or omissions in this work.

Thanks are due to Mrs Venetia Oakley of Turville Word Processing Services and the staff of Information TRANSFER International for their patient work in formatting and assembling this volume.

A.J. Jouhar

Publisher's note

Poucher's Perfumes, Cosmetics & Soaps was last available in three volumes. Volume 1 was in its seventh edition and volumes 2 and 3 in its eighth edition.

This volume is the first volume of what will be a two volume set comprising together a ninth edition of the work.

All information given in this volume is correct to the best of our knowledge at the time of writing but it is recommended that the reader consults the IFRA guidelines or the RIFM monographs referred to in the text.

Dictionary of the raw materials of perfumery and some cosmetic and toiletry products

Contents

Preface Publisher's note	vii vii
Dictionary of the raw materials of perfumery and some cosmetic and toiletry products	1
Appendix: Materials with IFRA guidelines, but not listed in Poucher's	349

ABIR

Appearance

Powder Aromatic

Odour Chemical

Contains curcuma, cardamom, cloves, and sandalwood.

Uses

Used by the Hindus.

ABSOLUTES

Colourless absolutes are known as absoluols, S.I.S., and integral essences.

Source

NATURAL

Prepared from flowers, leaves, twigs, roots, barks or resins of living

or dead plant material.

Isolation

The plant material is extracted by petroleum ether or other volatile solvents in a closed apparatus. After placing these in series, the solvent runs through and is then distilled off at low pressure to be used again. The product or concrete, consisting of the perfume together with the natural insoluble wax and pigments, is shaken in a machine together with a strong alcohol and the insoluble wax is separated. After cooling the alcoholic solution to below zero and filtering off any dissolved wax, the perfume is then isolated from the solution by distillation *in vacuo* at a low temperature.

The absolute is left in the retort.

Appearance

Usually coloured or colourless liquids.

Odour Uses Very fine odours which vary according to the source.

Fine perfumery.

ACACIA

Source

NATURAL

An extensive genus of trees and shrubs from the Mimosa section

of the N.O. Leguminosae.

Comments

Commercially produced perfumes are based upon the odour of *Robinia pseudacacia*: they are mixtures of synthetics such as anisic aldehyde, methyl anthranilate, iso-butyl benzoate, and phenylacetic aldehyde

aldehyde.

ACACIA GUM

[9000-01-5]

CTFA name

Acacia

Gum senegal, gum arabic.

Source

GEOGRAPHIC

A plant indigenous to Northern Africa.

NATURAL

Obtained from the bark of the tree Acacia senegal, Willd., and

other species of N.O. Leguminosae.

Isolation

An incision is made into the bark of the tree and the resulting

exudate hardens on exposure to the air. The best gum is collected

in Kordofan.

Appearance A hard resinous exudate; it occurs in spheroidal tears up to 32 mm

in diameter.

Physical Insoluble in alcohol but almost completely soluble in twice its

weight of water. Also soluble in glycerol and propylene glycol.

Aqueous solutions are acidic.

Uses Preparation of liquid kohol.

ACETALDEHYDE PHENYLETHYL-n-PROPYLACETAL

Acetal R

 $C_{13}H_{20}O_2$

Isolation From acetaldehyde-dipropylacetal and phenylethyl alcohol.

Appearance Colourless liquid.

Odour Powerful and natural leafy-green note.

Uses Widely used to add natural green or floral effects to a wide range

of fragrance types.

ACETANISOLE

[99-93-4]

p-Methoxyacetophenone

 $C_9H_{10}O_2$

Appearance White crystals.

Odour Fragrance, typical for lilac blossom, with warm, heavy and sweet

undertones.

Uses Soaps, particularly mimosa, fougere and trefle.

Physical m.p. 36–38 °C, practically insoluble in water, soluble in alcohol

and oils.

RIFM Monograph (1974) FCT, 12, 927.

ACETATE C₇

[112-06-1]

Acetic acid, heptyl ester; heptyl ethanoate; n-heptyl acetate;

heptanyl acetate

 $CH_3 \cdot [CH_2]_6 \cdot OCOCH_3$

Source

NATURAL Does not occur in nature.

Appearance A colourless liquid with a slightly floral odour. Physical GC RIFM no. 74–3; IRC RIFM no. 74–3.

ACETATE C_{11}

[112-19-6]

Undecenyl acetate; 10-hendecen-1-yl acetate; 10-hendecenyl

acetate; undecenylenic acetate

Chemical Name 10-undecen-1-yl acetate

 $CH_2\!:\!CH\!\cdot\![CH_2]_9\!\cdot\!OCO\!\cdot\!CH_3$

Source

NATURAL

Not found in nature.

Isolation

Esterification of 10-undecen-1-ol with acetic acid.

Physical

GC RIFM no. 74-6; IRC RIFM no. 74-6.

ACETATE C12

[112-66-3]

Acetic acid, dodecyl ester; dodecanyl acetate; n-dodecyl acetate;

lauryl acetate

Isolation

Esterification of lauryl alcohol with acetic acid.

ACETIC ACID

[64-19-7]

CTFA name

Acetic acid Ethanoic acid CH₂COOH

Source

NATURAL

Obtained from wood.

CHEMICAL

Produced synthetically from alcohol.

Isolation

Destructive distillation of wood; this produces three fractions: gases, such as methane, which are not condensed; pyroligneous acid; tar, which is the source of creosote. The second fraction

contains the acetic acid which may be fixed with lime.

Ethyl alcohol may be oxidized into acetic acid by means of an

enzyme, Mycoderma aceti, which obtains the necessary oxygen

from the atmosphere.

Appearance Odour

Colourless liquid.

Chemical

Distinctive pungent odour. Acetic acid generally contains 33% of real acid.

ACETIC ACID, GLACIAL

[64-19-7]

Ethanoic acid

CH₂COOH

Isolation

Distillation of dried sodium or calcium acetate with sulphuric acid.

Physical Chemical

Other

The distillate should contain 98.9% weight acetic acid.

The specific gravity rises from 1.058 to 1.075 on the addition of water until the mixture contains 77% acid. Further addition of water lowers the specific gravity. At 46% it has the same specific

gravity as the original glaciale and continued dilution causes the specific gravity to decrease.

Uses Comments Used by perfumers who prefer to dilute it to the strength required.

May be used in the preparation of smelling salts, and toilet vinegar when it is mixed with various essential

oils.

ACETONE [67-64-1]

Chemical name 2-Propanone CTFA name Acetone

Dimethyl ketone; beta-ketopropane; pyroacetic ether

CH₃COCH₃

Colourless volatile liquid. Appearance

Odour Characteristic pungent, sweetish taste.

Physical b.p. 56.3 °C, m.p. -94.8 °C: highly flammable miscible with

water and alcohol, chloroform, ether and most alcohols.

Uses In the preparation of nail varnishes (useful solvent for celluloid

and nitro cotton).

Comments Prolonged or repeated topical use may cause erythema or dryness.

ACETOPHENONE

[98-86-2]

Chemical name Methyl phenyl ketone

Phenyl methyl ketone; 1-phenylethanone; acetylbenzene; 'hypnone'

C.H.O

Source

Occurs in the oils of labdanum resin and Stirlingia latifolia. NATURAL

Colourless liquid, solidifying in the cold. Appearance

Odour Pungent-sweet, reminiscent of hawthorn with floral undertones. b.p. 202 °C, m.p. 21 °C, slightly soluble in water but freely soluble Physical

in alcohol, chloroform and ether, fatty oils and glycerol.

Uses In perfumes such as hawthorn, mimosa and foin coupe and in

low cost fragrances for soaps, detergents, household and industrial

products.

Blends well with anisic aldehyde, terpineol, and heliotropin. Comments

RIFM Monograph (1973) FCT, 11, 99 and (1973) FCT, 11, 1079.

ACETYL CEDRENE

[68867-57-2]

Vertofix

C17H26O

Obtained from cedar wood oil by the acetylation of terpenes. Isolation

Appearance Slightly viscous light yellow liquid.

Odour Warm and woody, reminiscent of cedar and vetiver.

RIFM Monograph (1978) FCT, 16, 639.

4-ACETYL-6-TERT-BUTYL-1,1-DIMETHYLINDAN

[3848-24-6]

4-acetyl-1,1-dimethyl-6-tert-butylindan; celestolide; ethanone,

1-[6-, 1-dimethylethyl-2,3-dihydro-1,1-dimethyl-]H-indane

Source

NATURAL does not occur in nature.

White crystals. Appearance

Physical GC RIFM no. 72-96; IRC RIFM no. 72-96.

7-ACETYL-1,1,3,4,4,6-HEXAMETHYL-TETRAHYDRO-NAPHTHALENE

[21145-77-7]

Tonalid C18H26O

Isolation

Synthesized from dimethyl butene and p-cymene with subsequent

acetylation.

Appearance Odour

Colourless to white crystals. Sweet and musky-woody.

Physical

b.p. 248 °C, m.p. 46 °C.

Uses

Wide range of applications from toiletries to household products. Synthetic tetralin-type musk.

Comments

RIFM Monograph (1983) FCT, 21, 645.

ALCOHOL C6

[111-27-3]

Caproic acid; 1-hexanol; n-hexyl alcohol Hexan-1-ol

Chemical name

 $CH_3 \cdot [CH_2]_4 \cdot CH_2OH$

Source

Is a constituent of several essential oils and aromas—especially NATURAL

apple, strawberry, tea, violet and other flowers. Reduction of ethyl caproate with sodium alcoholate.

Isolation Physical

GC RIFM no. 74-125; IRC RIFM no. 74-125.

ALCOHOL C₁₀ See n-DECYL ALCOHOL

ALCOHOL C11

[112-43-6]

Undecylenic alcohol

10-undecen-1-ol Chemical name

 $CH_2 \cdot CH[CH_2] \cdot CH_2OH$

Source

NATURAL

Found in the leaves of Litsea odorifera.

Isolation Physical

Sodium reduction of undecylenic acid esters. GC RIFM no. 71-10; IRC RIFM no. 71-10.

RIFM Monograph (1978) FCT, 16, 641.

ALDEHYDE C6

[111-71-7]

Caproaldehyde; caproic aldehyde; hexaldehyde; hexoic aldehyde

1-hexanal Chemical name

Source

NATURAL

Found in a number of essential oils.

Isolation

Oxidation of n-hexanol. A colourless mobile liquid with a strong fatty odour.

Appearance Physical

GC RIFM no. 71-12; IRC RIFM no. 71-12.

ALDEHYDE C₇ See n-HEPTANAL

ALDEHYDE C₈ See n-OCTYL ALDEHYDE

ALDEHYDE C9 See n-NONYL ALDEHYDE

ALDEHYDE C₁₀ See DECYL ALDEHYDE

ALDEHYDE C11, SATURATED See UNDECYLIC ALDEHYDE

ALDEHYDE C_{11} , UNSATURATED See UNDECYLENIC ALDEHYDE

ALOE-WOOD OILS

[84837-08-1]

Agar-attar; Oriental lignaloes

History Was valued by the Egyptians and later by Arabs and Jews in the

Middle Ages.

Source

Trees native to Bengal, Burma, Assam and Java. GEOGRAPHIC

Distillation of the wood of Aquilaria agallocha. NATURAL

Odour Compares with ambergris and sandalwood.

ALLYL AMYL GLYCOLATE

[67634-00-8]

Chemical name Glycolic acid, 2-pentyloxy allyl ester

 $C_{10}H_{18}O_3$

Appearance

Colourless liquid.

Odour

Strong, fruity, pineapple with a green galbanum nuance.

Uses

To reinforce modern green and oriental fragrances with strength

and tenacity.

ALLYL CAPROATE

[123-68-2]

Allyl hexanoate; hexanoic acid, 2-propenyl ester

Chemical name

2-propenyl hexanoate

CH2.CH.CH2.OOC[CH2]4.CH3

Source

NATURAL

Does not occur in nature.

Isolation

Esterification of allyl alcohol with caproic acid. GC RIFM no. 71-20; IRC RIFM no. 71.20.

Physical

ALLYL CAPRYLATE

[4230-97-1]

Allyl octanoate; octanoic acid, 2-propenyl ester; 2-propenyl octanoate; 2-propenyl octylate

CH3: CH · CH3 · OCO · [CH3] c · CH3

Source

NATURAL

Not thought to occur in nature.

Isolation

Esterification of allyl alcohol with octanoic acid.

Appearance

A colourless oily liquid.

Physical

GC RIFM no. 75-1; IRC RIFM no. 75-1.

ALLYL CYCLOHEXYL ACETATE

Allyl cyclohexaneacetate; allyl cyclohexylacetate; allyl hexahydrophenylacetate; cyclohexaneacetic acid, 2-propenyl ester; 2-propen-

1-vl cyclohexaneacetate.

C₆H₁₁·CH₂·OCO·CH₂·CH:CH₂

Source

NATURAL

Does not occur in nature.

Chemical

Esterification of allyl alcohol with cyclohexaneacetic acid.

Appearance

A colourless liquid.

Physical

GC RIFM no. 74-276; IRC RIFM no. 74-276.

ALLYL CYCLOHEXYL PROPIONATE

[2705-87-5]

Chemical name

Allyl-3-cyclohexyl propionate

C12H20O2

Isolation

By direct esterification of allyl alcohol with cyclohexanepropionic

acid.

Appearance

Colourless, slightly oily liquid. Powerful, sweet-fruity, resembling pineapple.

Odour Uses

As a topnote ingredient for fruity and fruity-floral compositions and in combination with citrus notes to provide a fruity

characteristic to the fragrance.

RIFM Monograph (1973) FCT, 11 491 and (1973) FCT, 11, 1081

(Binder, p. 66).

ALLYL IONONE

[79-78-7]

Chemical name

alpha-Allyl ionone

Hexalon, Cetone V

C16H24O

Isolation

By citral condensation with allyl acetone followed by cyclization.

Appearance

Pale yellow oily liquid.

Odour

Peculiar oily-sweet, slightly sweet-nutty and woody character.

Physical

b.p. approx. 265 °C.

8 Allyl phenoxyacetate

Uses In combination with other ionones in modern aldehydic creations

and in fragrances with fruity-aldehydic topnotes.

Comments Its odour tends to change with ageing, particularly under poor

storage conditions.

RIFM Monograph (Allyl alpha-ionone) (1973) FCT, 11, 493 and

FCT, 11, 1081 (Binder, p. 67).

ALLYL PHENOXYACETATE

[7493-74-5]

Acetate PA; acetic acid, phenoxy, 2-propenyl ester; 2-propenyl

phenoxyacetate

 $CH_2: CH \cdot CH_2 \cdot OCO \cdot CH_2 \cdot O \cdot C_6H_5$

Source

NATURAL Does not occur in nature.

Isolation Esterification of allyl alcohol with phenoxyacetic acid.

Physical GC RIFM no. 74–19; IRC RIFM no. 74–19.

ALUMINIUM NAPHTHOSULPHONATE

[1300 - 81 - 8]

Chemical name Aluminium beta-naphthodisulphonate

2-hydroxynaphthalenedisulphonic acid aluminium salt

 $Al_2(C_{10}H_5(OH)(SO_3)_2)_3$

Source

CHEMICAL Prepared from barium beta-naphtholodisulphonate and aluminium

sulphate.

Appearance Fine almost white powder.

Physical Soluble in water and glycerol; practically insoluble in ether.

Uses Has a mild antiseptic and astringent action and has been used as

a deodorant.

AMBERGRIS (TINCTURE)

[8038 - 65 - 1]

History One of the most valuable materials used by the perfumer, prized

for many centuries for its curious perfume and reputed aphrodisiac properties, and thought at one time to be the excrement of a bird, a form of congealed gum or bitumen or even a marine

fungus.

Source

GEOGRAPHIC Collected from the shores of Australia, New Zealand and the

Indian Ocean.

NATURAL Pathological growth formed in the stomach of male sperm whales

(*Physeter macrocephalus*/catadon) when it is feeding on squid or cuttle fish and is caused by the irritation of indigestible beaks in the whale's stomach. It is found either in the stomach or lodged in the bowel, although the most common source has traditionally been as collected flotsam rather than the slaughter of whales.

Isolation Ambergris is powdered and 30 g are added to 11 of alcohol. The solution is agitated continuously for several days at 25–30 °C and

then occasionally for as long as maturing can be afforded. A few days before use it is filtered.

Appearance Ten different and distinct types of ambergris exist and the colours range from pure white, silver grey (from New Zealand), golden

(from the North African coast), golden grey (from the Gulf of Aden), pale yellow (from Australia), dark grey with golden striations, black with some golden streaks inside (from the Azores), hard black (from all parts of the world), dry and dark grey (from the Persian Gulf), and dark reddish-brown (from Madagascar).

The best quality is light grey.

Odour Varies and, although characteristic is difficult to define, has been

described as 'musky', 'musty', 'earthy', and reminiscent of the sea.

Physical True ambergris has a specific gravity between 0.780 and 0.920 and

softens about 60 °C. It liquefies at higher temperatures and is melted by boiling water. It is flammable, and soluble in ether

and certain volatile and fixed oils.

Chemical The three major components are the triterpene alcohol ambrein,

epicoprostanol and coprostanone.

Other A hot needle should enter the mass easily, without sticking, and a characteristic odour is given off. An amber-coloured molten

drop should appear on removing the point. Of the four animal extracts it has the least animal character. It has the longest

duration of evaporation.

Uses Ambergris extract is confined exclusively to the preparation of

expensive perfume oils.

Comments Substitutes are often used as genuine ambergris is difficult to

obtain.

RIFM Monograph (1976) FCT, 14, 675.

AMBRETTE SEED OIL AND ABSOLUTE

[8015-62-1]

Ambrette oil

Source Hibiscus abelmoschus, L. (musk seed), N. O. Malvaceae (mallow

family).

GEOGRAPHIC Central and South America, Indonesia and India.

Isolation The essential oil is obtained from the dried and powdered seeds

by steam distillation; fatty acids can be removed by solvent extraction (usually alcohol) to give the so-called absolute.

extraction (usually alcohol) to give the so-called absolute. 0.3–0.5% depending upon source of the plant material.

Yield 0.3–0.5% depending upon source of the plant material. Appearance Liquid.

Odour Musky, aromatic, very persistent, with a distinct cognac note.

Chemical Sesquiterpene alcohol farnesol has been identified as a constituent.

Exalting agent in expensive fine fragrances.

Uses Exalting agent in expensive, fine fragrances.

RIFM Monograph (Ambrette seed oil; Hibiscus abelmoschus)

(1975) FCT, 13, 705.