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Preface

The theory of functional equations is one of the classical fields of math-
ematics. Functional equation problems arose in different areas from the
ancient times both in theory and in applications. In 1966 J. Aczél pub-
lished his book “Lectures on functional equations and their applications”
(see [Acz66]), which is considered the bible of this theory. Although sev-
eral books, monographs, papers, etc. have since then been published in
the field, there is no doubt that this volume is still the most determining
reference book. There are other important contributions by J. Aczél and
J. Dhombres in “Functional Equations Containing Several Variables” (see
[AD89]) and also a basic reference book is due to M. Kuczma ([Kuc09)).
The interested reader will find several further references in these books on
this wide-ranging field with applications in geometry, geometrical objects,
statistics, information theory, utility theory, etc. Here we mention further
volumes that have been published more recently, which may convince the
reader of the usefulness and effectivity of the diverse methods and applica-
tion possibilities of the theory of functional equations: [CRC92], [Cor02],
[Cze02], [Fel08], [For10], [HIR98], [JS96], [J4r05], [Kan09], [SR98], [SK11],
[Szé91].

In the old times functional equations were solved by different ad-hoc —
however, ingenious — methods. Anyway, the theory was far from being a
compact mathematical discipline in the sense that there were no real gen-
eral solution methods, no real theories: a good idea would just solved the
problem. Later on the situation changed. A pioneer work of A. Jéarai (see
[J4r86), also in [JS96]) — in close connection with Hilbert’s Fifth Problem
— led to the observation that the strong algebraic character of a functional
equation implies important consequences for the analytic behaviour of the
solutions: namely, very weak analytic assumptions imply very strong ana-
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viii Functional equations on hypergroups

lytic properties. This “regularization theory” was maybe the first important
step to build up a coherent theory of functional equations together with its
important consequences. The “good old ad-hoc” ideas were replaced by
strong theorems and the weight of the theory of functional equations grew
similar to that of the theory of differential equations and to other well-
respected areas of mathematics. Beside several relevant works of Jdrai the
interested reader will find further references in [JS96]. The comprehensive
volume on regularization theory of Jarai was published in 2005 [J4r05].

However, another stream started in the 90’s with the monograph of the
present author (see [Szé91]) emphasizing and introducing the fundamental
role of spectral analysis and spectral synthesis in the theory of a special type
of functional equations: the so-called convolution type functional equations.
Convolution type functional equations are actually integral equations and
it turns out that a major part of the so-called “classical” equations belongs
to, or can be reduced to this type. In the monograph [Szé91] the author
offers a general method for the solution of convolution type systems of
functional equations. The essence of the method is that first the “basic
building blocks” of the solution space of the functional equation should be
found - these are the so-called “exponential monomials” — and then — in
case of spectral synthesis — the linear combinations of these basic solutions
will form a dense set in the solution space, that is, they characterize the
solution space. It happens, or not, the exponential monomial solutions play
a very special and important role in the solution process.

It turns out that several ideas of this type can be adopted to a more
delicate situation: to the situation of hypergroups. The concept of DJS-
hypergroup, which we shall use here (according to the initials of C. F. Dunk],
R. I. Jewett and R. Spector) is due to R. Lasser (see e.g. [Ros98], [BH95]),
[Las83]. One can realize a hypergroup like the convolution structure of some
measure algebra over a group, but the group structure has been neglected.
If x, y are elements of a hypergroup, then the notation z *y has a symbolic
meaning only: it does not represent an element of the hypergroup, just a
kind of “blurred product”. In the group-case z - y is a well-defined element
of the underlying structure, which also can be considered as a measure fiz
with the property that for any set B the value p, ,(B) is equal to 1 if 2 -y
belongs to B and it is equal to 0, if x - y does not belong to B. Hence
this is exactly the point mass concentrated at x - y. However, in the case
of a hypergroup, = * y denotes a measure, actually 6, * d,, which is not
necessarily a point mass and z * y(B) represents the “probability” of the
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event that the “product” z * y belongs to B.

Anyway, using x = y one can introduce translation operators on hyper-
groups, which makes it possible to set up a theory of harmonic analysis.
The interested reader will find further details and references in the fun-
damental work of W. R. Bloom and H. Heyer ([BH95]). The theory of
hypergroups has been a developing field, where ideas from different ar-
eas of mathematics can be utilized to obtain general results, which may
help better understanding also in the classical situation. The interested
reader will find further references and better insight in the papers [Las83],
[Ros77], [Ros98], [AC11], [KPC10], [OEBG10], [Sam10], [Hey09], [LBPS09),
[LBS09], [Mur08], [BHO8], [DKO07], [ELO7], [Pav07c], [LORO7], [Mur07],
[Mto06], [HKO06], [BRO5], [Las05], [FLS05], [SW03], [BBM02], [Gha02],
[Las02], [BR02], [KumO1], [Hin00], [NI0O], [GS00], [Ros99], [Pav99al,
[Pav99b], [RV99], [CV99], [CS98], [Tri98], [Sch98], [RAL+98], [Par97],
[Tri97], [OW96], [Wil95], [R6s95b], [Ros95¢c], [Hey95], [Ché95], [BK95],
[CGS95).

As soon as translation operators appear on hypergroups a wide range of
machinery can be adopted from the group-case. Nevertheless, the classical
group-methods can be applied only restrictively: the special situation does
not make it possible to “copy” the well-known classical methods. However,
there are some distinguished function classes, like additive functions, expo-
nential functions, or more generally, exponential polynomials, which play a
vital role on both groups and hypergroups. Another class is represented by
the so-called moment functions, which are extremely important in the dif-
ferent applications of hypergroups in probability theory and statistics. For
more about these function classes the interested reader will find detailed
information in [BH95], [Szé91], [Gal98], [Ros98], [Zeu92], [0S05], [0S04],
[0S08], [Szé06¢], [Gal97].

The appearance of translation operators enables us to utilize a very
effective method of studying functional equations and systems of func-
tional equations on hypergroups. Namely, it turns out that some of the
methods of spectral analysis and spectral synthesis can be adopted and
used in the hypergroup-situation. The present author has recently pub-
lished a volume about the applications of spectral analysis and spectral
synthesis on different structures ([Szé06a]). In that monograph the inter-
ested reader will find detailed information about spectral analysis, spec-
tral synthesis and their use in the theory of functional equations. How-
ever, it turns out that several new ideas and methods can be transformed
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into the hypergroup-situation, which may enrich both fields: the the-
ory of functional equations and the theory of hypergroups. To present
the fruitful consequences of this delicate “marriage” was one of the main
purpose to write this volume. The interested reader will find further
results and references on these connections in [Ros98], [Gal98], [Las83],
[Zeu92|, [AC11], [RZ11], [Vajl0b], [KPC10], [OEBG10], [AK10], [HP10],
[Hey09], [Las09a], [LBPS09], [NS09], [FK08], [Azi08], [Mur08], [BHOS],
[Ami07], [Pav07b], [HLO7], [Pav07c], [Mur07], [Mlo06], [HKO06], [Men05],
[BRO5], [Las05], [FLS05], [Pav04], [SW03], [N103], [HL03], [Wil02], [Gha02],
[GTO02b], [Gal02], [Las02], [GT02a), [Kum01], [NIO1], [Hin00], [NIOO],
[GS00], [FLOO], [Ros99], [Pav99al, [Pav99b], [NI99], [RV99], [CV99], [GS99],
[Gal99], [Ren98], [NS98], [CS98], [Geb98], [Zeu9s], [Tri98], [SW9I8], [Sch9s],
[Par97], [Pav97], [Wil97], [Zeu97], [KS97], [Flo96], [BHI6], [Ren96], [BRI6],
[OW96)], [Ehr96], [Sin96], [Zeu95b], [Wil95], [R6s95a), [CS95b], [R6s95b],
[Her95], [HV95], [OEBB95], [Zeu95al, [Zeu95al, [Voi95], [Voi95], [CS95a,
[BK95], [CGS95], [Szw95), [Han94], [RX94], [Zeu94], [Las94], [Voi93],
[Hey93], [RX93], [LORO07], [BR02], [RAL*98].

In what follows we try to give a brief overlook about the structure of
this booklet, the fundamental methods and the main results.

This Preface is followed by an Introduction in which we summarize the
most important concepts concerning hypergroups. Some of these concepts
are analogous to those of the ones in the group-case, but sometimes we
meet basic differences. However, the concepts of additive functions, ex-
ponential functions, exponential monomials and exponential polynomials
are introduced here and the relation to the corresponding group-case con-
cepts is presented. Another important function class is the class of moment
functions, mentioned above, which plays a very important role in the appli-
cations of hypergroups in probability theory and statistics. The interested
reader should refer to [BH95], [Gal98], [Ros98], [Zeu92] and the references
included in these works.

The Introduction is also devoted to present those analytic methods,
which are very effective in the group case to prove strong regularity of
solutions of functional equations assuming their weak regularity, only. The
basic tools are Haar measure and invariant means. Here we tried to present
a unified, nonstandard treatment of these basic analytic tools.

The next two chapters are devoted to the study of functional equa-
tions on a very important type of hypergroups: polynomial hypergroups
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in one variable and polynomial hypergroups in several variables. Here
we give the complete description of those basic functional classes men-
tioned above, which play an important role in the applications: additive
functions, exponential functions and exponential polynomials. Although
the two chapters are very closely related to each other, the author’s idea
was to separate the consideration of polynomial hypergroups in one vari-
able and in several variables. The reason is that sometimes the methods
are basically different and this kind of “separation” may help better un-
derstanding. For detailed information about polynomial hypergroups the
reader should refer to [Las83], [Szé04], [V0g87], [HHL10], [Las09b], [Las09a),
[Szé08], [BHO8], [Las07], [LORO7], [M1o06], [HLO3], [BR02], [Tri00], [GS99],
[Ehr96], [Zeu95b], [CS95a], [Szw95].

In Chapter 5 a new type of hypergroups appears: the so-called Sturm—
Liouville hypergroups, which play a fundamental role in the theory of hy-
pergroups, differential equations and initial value problems. It turns out
that some of the above mentioned important function classes can be intro-
duced, studied and characterized on these types of hypergroups. For more
information about general and special Sturm-Liouville-hypergroups see e.g.
[Ché95), [Szé06b], [0S08], [Vajl0b], [Vajl0a), [DKO07], [Ole01], [Ché95],
[Szé06b], [0S08], [ZeuB9], [Ma08], [Tri05al, [Tri05b], [BBMO02], [BX00b],
[BX00a), [NRT98], [JT98], [BX98a], [BX98b], [BX97], [LT95], [BX95].

Chapter 6 contains three sections on the so-called two-point support
hypergroups. Here we illustrate how the advanced methods of the theory
of functional equations can be utilized to characterize some basic function
classes on different types of hypergroups. We exhibit an example for two-
point hypergroups of compact and of noncompact type, moreover another
one, the so-called cosh hypergroup, which has been studied by H. Zeuner in
[Zeu89].

Chapters 7 and 8 are — in some sense — the heart of this book: spectral
analysis and spectral synthesis on different special types of hypergroups.
Spectral analysis and spectral synthesis have become effective tools in func-
tional equations recently. The classical roots go back to harmonic analysis
and Fourier series. The abstract background can be found in [Loo53]. Basic
knowledge and results on classical spectral theory of linear operators and
spectral synthesis can be found in [Ben75], [Beud8), [Hel52], [Ris49], [Szé02],
[Szé06a], [MA50], [Mal54], [Vog87], [DS88a], [DS88b], [DS88c], [Lef58],
[Mal59], [Sch48], [Hel83], [HR63]. Studying harmonic analysis on hyper-
groups is possible because of the presence of translation operators. The
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fundamentals of this theory are presented in [BH95]. The use of harmonic
analysis and synthesis in the theory of functional equations was invented in
[Szé91]. However, the group-methods are not always easy to adopt in the
hypergroup situation: sometimes new ideas are needed. Nevertheless, here
the field is open as we were able to prove spectral analysis and spectral
synthesis theorems for a restricted class of hypergroups, only. However, we
hope that the applications we present here will convince the reader that
further investigations in this area may lead to interesting and useful re-
sults - both for functional equationists and for hypergroup experts. We
just mention that — as it is clear from the results of Sections 2.2, 3.2 and
4.2 — it is a nontrivial problem on how to define exponential monomials on
arbitrary (commutative) hypergroups.

Chapter 9 is devoted to a classical problem of probability theory: the
moment problem (see [Akh65], [Sti94]). We formulate the problem on com-
mutative hypergroups and solve the uniqueness in the case of polynomial
hypergroups in a single variable and of Sturm-Liouville-hypergroups.

In Chapters 10 and 11 we collected diverse applications of spectral analy-
sis, spectral synthesis and other methods. These applications are illustrated
on different classical and non-classical functional equations. For instance,
in Chapter 11 the reader meets a new theory of difference equations on
hypergroups — at least the basic and far-leading ideas.

The closing Chapter 12 is devoted to a special field of functional equa-
tions: stability theory. Since the pioneer talk of Stanislaw Ulam in 1940
presented to the audience of the Mathematics Club of the University of
Wisconsin the door has been opened to a completely new world of investi-
gations: stability became a central problem in the theory of functional equa-
tions (see [Cor02], [HIR98], [Hey93], [Cze02]). Here we make an attempt
to outline some possible ways climbing these mountains on hypergroups.

This volume is completed with a list of references and a subject index.

We hope that the present work is able to represent faithfully the possi-
bilities of connecting functional equation problems with those coming from
the theory of hypergroups. We are convinced that both areas will profit
from a “come together” of this type. This volume is written for those who
have open eyes for both meadows, who have open ears for both concerts
and who dare to enter a new world of ideas, a new world of methods — and,
sometimes, a new world of unexpected difficulties.
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The author is indebted to all those who helped in this work to become
complete. Finally, I would like to express my special thanks to my students,
Agota Orosz and Ldszlé Vajday, who did their best, who provided the
newest results and without whose contribution this work could not have
been accomplished.

Ldszlo Székelyhidi
2012
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Chapter 1

Introduction

1.1 Basic concepts and facts

The major part of this section is taken from [BH95]. The concept of DJS-
hypergroup (according to the initials of C. F. Dunkl, R. I. Jewett and
R. Spector) depends on a set of axioms which can be formulated in several
different ways. The way of formulating these axioms we follow here is
due to R. Lasser (see e.g. [BH95], [Ros98]). One begins with a locally
compact Hausdorff space K and with the space C.(K) of all compactly
supported complex valued functions on the space K. The space C.(K) will
be topologized as the inductive limit of the spaces

Ce(K)={f€CK) : supp(F) C E},

where E is a compact subset of K carrying the uniform topology. A (com-
plex) Radon measure p is a continuous linear functional on C.(K). Thus,
for every compact subset E in K there exists a constant ag such that
|u(f)] € agl|flle for all f in Cg(K). The set of Radon measures on K
will be denoted by M(K). For every p in M(K) we write

llul] = sup{|u(f)| : f € Ce(K), [Iflloo < 1}-

A measure p is said to be bounded, if ||u|| < +oo. In addition, u is called
a probability measure, if p is nonnegative and ||u|| = 1. The set of all
bounded measures, the set of all compactly supported measures, the set
of all probability measures and the set of all probability measures with
compact support in M(K) will be denoted by My(K), M.(K), M;(K)
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and M .(K), respectively. The point mass concentrated at x is denoted by
0,. Via integration theory we are able to consider measures as functions on
the o-algebra B(K) of Borel subsets of K and we use the notation fK fdu
rather than u(f) even when either is possible. We use the notation M, (K)
for the set of positive measures on the o-algebra B(K) that means, for
measures which take values in [0, +00].

Now we formulate the first part of the axioms. Suppose that we have
the following :

(H*) There is a continuous mapping (z,y) +— 65 * d, from K x K into
M (K). This mapping is called convolution.

(HVY) There is an involutive homeomorphism = — zV from K to K.
This mapping is called involution.

(He) There is a fixed element e in K. This element is called identity.

Identifying « by §, the mapping in (H*) has a unique extension to
a continuous bilinear mapping from M(K) x Mp(K) to My(K). The
involution on K extends to a continuous involution on M (K'). Convolution
maps M;(K) x M;(K) into M;(K) and involution maps M;(K) onto
M (K). Then a DJS-hypergroup, or simply a hypergroup is a quadruple
(K, *,V,e) satisfying the following axioms: for each z,y, 2 in K we have

(H1) 6g * (0y * 05) = (0g * Oy) * 6,

(H2) (6g % dy)Y = dyv * dzv

(H3) 8 * 8¢ = 8¢ % 0 = Oz,

(H4) e is in the support of 6, * d,v if and only if z =y,

(H5) the mapping (x,y) — supp (d; * d,) from K x K into the space of

nonvoid compact subsets of K is continuous, the latter being endowed
with the Michael topology (see [BH95]).

For any measures p,v in My(K) obviously p * v denotes their convo-
lution and pV denotes the involution of u. With these operations M;(K)
is an algebra with involution. If the topology of K is discrete, then we
call the hypergroup discrete. In case of discrete hypergroups the above
axioms have a simpler form. As in this book we frequently will focus on
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discrete hypergroups, here we present a set of axioms for these types of
hypergroups. Clearly, in the discrete case we can simply forget about the
topological requirements in the previous axioms to get a purely algebraic
system.

Let K be a set and suppose that the following properties are satisfied:

(D*) There is a mapping (z,y) — 6 * §, from K x K into M (K),
the space of all finitely supported probability measures on K. This
mapping is called convolution.

(DV) There is an involutive bijection  — zV from K to K. This
mapping is called involution.

(De) There is a fixed element e in K. This element is called identity.

Identifying x by J, as above and extending convolution and involution, a
discrete DJS—-hypergroup is a quadruple (K, x,V, e) satisfying the following
axioms: for each x,y, z in K we have

(D1) 8y % (0y % 02) = (0 % Oy) * 05,

(D2) (05 % 0y)Y = Oyv * Ozv

(D3) 6z * 0e = O¢ * 0y = 0g

(D4) e is in the support of 0, * é,v if and only if z =y.

If 6, x 0y = 0y * d; holds for all z,y in K, then we call the hyper-
group commutative. If zV = x holds for all z in K, then we call the
hypergroup Hermitian. By (H2), any Hermitian hypergroup is commuta-
tive. In any case we have ¢V = e. For instance, if K = G is a locally
compact Hausdorff-group, 6, * 0y = dzy for all z,y in K, 2V is the in-
verse of x and e is the identity of G, then we obviously have a hypergroup
(K, *,V,e), which is commutative if and only if the group G is commutative.
However, not every hypergroup originates in this way.

The simplest hypergroup is obviously the trivial one, consisting of a
singleton. The next simplest hypergroup structure can be introduced on
a set consisting of two elements. Now we describe all hypergroups of this
type. Let K = {0,1}. Clearly, the only Hausdorff topology on K is the
discrete one. We specify e = 0 as the identity element. In this case the
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only involution satisfying the above axioms is the identity, that is, 0¥ =0
and 1V = 1. Consequently, we have a Hermitian hypergroup, which is
necessarily commutative. Now we have to define the four possible products
8o * 0o, do * 01, 01 * &g and &; * 6;. As & is the identity, the first three
products are uniquely determined and the fourth one must have the form

01 * 01 =0'60+(1—0)'(51

with some number 6 satisfying 0 < § < 1. It turns out that  # 0, as a
consequence of (D4). We shall denote this hypergroup by D(f). It is clear
that in this way we have a complete description of all possible hypergroup
structures on a set consisting of two elements. Observe that in the case
0 = 1 we have a group isomorphic to Z,, the integers modulo 2, in any
other case the resulting structure is not a group.

If K is any hypergroup and H is an arbitrary set, then for the function
f : K — H we define fV by the formula

(@) = f(=")

for each x in K. Obviously (fv)v = f. Any measure p in M,(K) satisfies
w'(f) = u(f")

for any bounded Borel function f : K — C.

Let K be any hypergroup. Then, for each z, y in K the measure d; * d, is
a compactly supported probability measure on K, which makes the measur-
able space (K, B(K),d, * 0,) a probability space. Any function f : K — C,
which is 8, * d,-measurable, can be considered as a random variable on this
probability space. In particular, any continuous complex valued function
on K is a random variable with respect to any measure of the form 4, * §,.
Clearly, any f is integrable with respect to each §, and its ezpectation is

E.(f) = / fds, = f(a),



