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Preface

The dynamic properties of a physical system can be described in terms of ordi-
nary differential, partial differential, and difference equations, or any combination
of these subjects. In addition, the systems can be time-varying, time-invariant and/or
time-delayed, and continuous or discrete systems. These equations are often nonlin-
ear in one way or the other and it is rarely possible to find their solutions. Numerical
solutions for such nonlinear dynamic systems with an analog or digital computer are
impractical. This is due to the fact that a complete solution must be carried out for
every possible initial condition in the solution space. Graphical techniques, which
can be employed for finding the solutions for special cases of first- and second-order
ordinary systems, are not useful tools for other types of systems as well as higher-
order ordinary systems. However, there are different theorems and methods con-
cerning existence, uniqueness, stability, and other properties of nonlinear systems
and/or their solutions. Among these qualitative properties, the stability of a given
system is the most crucial systems issue. Without the guaranteed stability, the system
will be of no value.

Many researchers have worked on stability robustness analysis for different sys-
tems. For a good list of these studies, one may read chapter five of sensitivity analysis
by Eslami (el). The aim of this book is to introduce some advanced tools for stability
analysis of nonlinear systems. Toward this end, first, standard stability techniques
are discussed with the shortcomings highlighted; then some recent developments in
stability analysis are introduced, which can improve the applicability of standard
techniques. Finally, stability analysis of special classes of nonlinear systems, for
example, time-delayed systems and fuzzy systems, are proposed.

This book is organized as follows: In the first chapter, the stability of ordinary
time-invariant differential equations will be considered. In Chapter 2, Lyapunov
stability analysis will be studied. The subject of the third chapter is time-invariant
systems. Chapter 4 deals with time-delayed systems. The stability analysis of fuzzy
linguistic systems models is considered in Chapter 5.

This book is intended for graduate students of all disciplines who are involved in
stability analysis of dynamic systems.

S.K.Y. Nikravesh
September 2010

(50th anniversary of the establishment of Amirkabir University of Technology [AUT])
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’I Basic Concepts

Introduction: In this chapter, the stability analysis of a system, the dynamics of
which are represented in time domain by nonlinear time-invariant ordinary differ-
ential equations, is considered. This chapter consists of the following subsections:

1.1 Mathematical model for nonlinear systems.
1.2 Qualitative behavior of second-order linear time-invariant systems (LTT).

1.1 MATHEMATICAL MODEL FOR NONLINEAR SYSTEMS

A nonlinear system may mathematically be represented in the following form:
Xp = [, X000y Xy Uy s U gy Uy o),
Xo = 520505000y Xn s Up s U yeves U5 L),
(1.1)

Xn = .fn(xlsxlﬂ-"axn-ulsu'lvnnumvr)*

where x;, i=1,2,....n denotes the derivative of x; (the ith state variable) with respect
to the time variable 7 and u;, j = 1, 2, ...,m denote the input variables. Equation (1.1)
could be written in the following state-space form:

X = f(x,u,r), (1.2)
where,
X u Si(x,u,t)
F ) >(x,u,t
x= X:g , u= u_' and flx,ut)= f_(x'u )
P Uy, Jo(x,u,0)

The measurable outputs (a p-dimensional vector) are functions of the states, the
inputs, and the time such that:

V1= (X0, X e X Uy Uy Uy S 1),
Vo = Mo (X1, X0 eees Xy s Uy s U gy Uy o 1),

(1.3)

Vp = h, (X1, X000 X Uy Uy Uiy o ).
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or, in the following general form:
v = h(x,u.n). 1.4

Equations (1.2) and (1.4) together are called the mathematical dynamic equa-
tions, or:

x = fx,u,t),

(1.5)
v=h(x,u,t).

These equations could be simulated using operational amplifiers (integrators) and
function generators as shown in Figure 1.1 (a) and (b).

LS
um
| x,(0) lClock u, saes Uy lClock
% l % = ; . B4
‘ I ' iy ey X, Uy oy Uy, 8) ‘
T LxlT LR LS +x[... +x”
x(0) - ' veu. [y [Clock
R R S g
ﬁ— e oo Txi xt }_‘ . L *x;'” ‘5‘"
. WO U Uy lClock s u’"¢ lC“’Ck
“rh e p e [ 2
;1* e +xj o x‘n x? o $xi.-. +‘xn
ull’ "m‘l’ Clc;ck
. &5
" x? fxi +x"
g ]E N
P TR p— i)l
s N fxut) — h(xut) /Y
. I J]
(b)

FIGURE 1.1  System dynamic simulation.
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It seems the dynamic systems could be simulated to obtain their responses, hav-
ing signal generators f; and s, However, there is a drawback with this approach,
since for each initial condition the simulation must be repeated. To have the actual
response of dynamic systems, (1.2) and (1.4), the system must be at least locally
Lipschitz in x,V x € D c R" and continuous in ¢, for every r.

Throughout this book, wherever this type of dynamic equation occurs, the sat-
isfaction of these conditions is assumed. The Lipschitz conditions are discussed
shortly in this chapter.

Although in theory, the simulation could be proposed as a solution for the stabil-
ity analysis, it is impractical or impossible, since in nonlinear system studies, every
initial condition should be used.

Special Cases: If a system is a feedback system, then the system’s inputs would
be functions of the states, thus:

u=g(x,n). (1.6)
Substituting (1.6) into (1.5) yields the following unforced dynamic equations:

%= f(xut)=F(x,t)= f(x,t), y=h(x,ut)=H(x,t)= h(x,t), (1.7a)

If the dynamic system (1.7a) is time invariant, then the system is called an autono-
mous (either forced or unforced) system.

x=f(x,u), or f(x)

y=nh(x,u), or h(x). (1.7b)

If the linearization technique is used in dynamic equations (1.5) or (1.7b), then linear
time-varying (1.8) or linear time-invariant (forced or unforced) (1.9) equations yield:

xli =[a_f|xojx”+ a—fl'\'()]un é14(t)'xIl-’-B(t)I’ln’
ax ) au o

(1.8)
yn = % I-\‘(l -xn + a_h IA‘() un é C(’)xn * D(r)u,,,
ax uo E)u )
or:
X, £ Ax, + Bu,
(L.9)

yp 2Cx, + Du,.

The index “n” stands for new variable. Note that (1.8) or (1.9) can only predict the
local behavior of the nonlinear system of (1.5) or (1.7), respectively.
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1.1.1  ExisteNce AND UNIQUENESS OF SoLuTIONS [k1]

The existence and uniqueness of the solution of (1.6) are given by the following
theorem.

Theorem 1.1:

Let f{x,r) be a single valued continuous function in a region defined by
lx;—x;(0)I<h;,i=1,2,...,n and 0o <t—1t; <T in which |f(x, 1)l<M for some o<M<oo,
and ¢, is the domain of piecewise continuity of f{x,7). If f{x,) satisfies the following
Lipschitz condition in x:

| f(x1,) = fxa,0)||SLlx; = xaf| o< L<oo,

Vx ,x,€B={xeR"|x—x,|<r},Vie(,,n), r>o,

then there exists some & > o such that the state equation x = f(x,r) with x(z,)= x,

i

has a unique solution over [¢,,f, +8]; 8 = min(7, ;). |

When n =1 and f{x) is autonomous, then the Lipschitz condition implies,

|f(x) = f(x2)

|x1 —le

<L,

that is, in a plane of f{x) versus x, a straight line joining any two points of f{x) cannot
have a slope with absolute value greater than L. Therefore, a discontinuous function
is not locally Lipschitz at the points of discontinuity.

More generally, if forre Ic Rand x € D c R", f (x,t) and its partial derivatives
df;/dx; are continuous, then f (x.t) is locally Lipschitz in x on D. f(x,t) is globally
Lipschitz in x if and only if (iff) g‘] are globally uniformly bounded in z.

Example 1.1:

Note that x =f(x)= x5 is not locally Lipschitz, at x = o since:

3
f’(x):%x'%—wo as x—0 x(t):(%)2 and x(t)=0

are the two different solutions for this differential equation, when the initial
state is

x(0) = 0. |
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Also, x=f(x)=—x" is locally Lipschitz for all x but not globally Lipschitz,
because f’(x)=-2x is not globally bounded.
Note that the linear time-varying system:

x=At)x+b(t)u,

is globally Lipschitz if and only if (iff) the elements of A(z) are piecewise continuous
and bounded. Therefore, the linear time-invariant systems are all globally Lipschitz.
In the following, it is assumed that the systems under consideration satisfy the

Lipschitz conditions. If the equilibrium state is at x, # 0, then let
A
Y=X—Xe,

thus:
y=i=f)=f+x)=2L0)

where f,(0)=0. Therefore, without loss of the generality, the origin could be con-
sidered as an isolated equilibrium state.

Equilibrium States: These are the states “x.” that if an unforced system (with
neither control inputs nor disturbance) reaches every one of these states, it will stay
there forever; therefore,

X, = f(x,,u=0,0)=0, V. (1.10)

In a linear system with nonsingular A(z), the sole equilibrium state is the origin. In
the nonlinear case, the equilibrium state could be an isolated one, similar to a linear
system, or infinitely many isolated equilibrium states, or there could be a continuum
of equilibrium states.

1.2 QUALITATIVE BEHAVIOR OF SECOND-ORDER
LINEAR TIME-INVARIANT SYSTEMS

Consider the unforced system:
x=Ax. (L.11)

The eigenvalues of A may satisfy one of the following situations:

a, . Both real negative with A, <A, <0.
a, . Both real positive with A, >A; >0.

b. Real eigenvalues with opposite signs, that is, A, <0 <A,.
c. Complex eigenvalues A, =0t jo.

The typical family of trajectories of these situations is shown accordingly in
Figure 1.2. The proof is omitted here and interested readers are referred to the litera-
ture for classical nonlinear control systems.
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FIGURE 1.2 Typical trajectories of second-order dynamic systems.

Note that when A, =+jo (i.e., Re [A;]=0 for some i) the linearization tech-
nique does not work [k1].

Example 1.2 [k1]:
Consider the following inverted pendulum equation with friction:
X| = X3,
X, =—asinx, — bx,,
The equilibrium states are as follows:
x; = km, k=0,1,..,

X2 =0.

The unforced linearized system would be as follows:

o B[S S0
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therefore:

det(A1— A) = det A =1 =AM 4+br+a=0 :k:—éil\/bz—%,
a A+b 2 2

thus, for both a and b positive, the eigenvalues have negative real parts. Therefore,
the origin is asymptotically stable (node).

To determine the stability of the equilibrium state at (7,0), the Jacobian matrix
would be evaluated at that state.

A=[ ¢ 1 }:k2+bl—a=0,
a -b

l,_2=—%bi%\/b2+4a

’

For positive scalars a and b, one of the eigenvalues is in the open right-half plane,
which implies unstable equilibrium state. Figure 1.3 represents the phase plane, sep-
aratrices, and equilibrium state (stable nodes and saddle points).

FIGURE 1.3 Phase plane of Example 1.2.
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PROBLEMS:

1.1: Consider the following scalar system:
i=—(1+x)x" 2 f(x)

a. Is f(x) locally Lipschitz?
b. Is f{x) globally Lipschitz?

1.2: Consider the following vector-valued system:

X2
f)=
—sat(x, +x;)

where:
-1 x<-—1
sat(x)=<x [x<1
+1 x>1

Does f(x) satisfy the Lipschitz condition?

1.3: The nonlinear dynamic equation for a pendulum is given by:
ml® = —mg sin® — kl6,

where [ is the length of the pendulum, m is the mass of the ball, and 6 is the angle
suspended by the rod and the vertical axis through the pivot point.

a. Choose appropriate state variables and write down the state equation.

b. Find all equilibrium states of the system.

c. Linearize the system around the equilibrium states, and determine whether
the system equilibrium states are stable or not.

d. Rewrite the pendulum model into the feedback connection form.

e. Make a simulation model of the system in Simulink®. Simulate the system
from various initial states. Is the equilibrium state of the system stable?
Are the equilibrium states unique? Explain the physical intuition behind
your findings.

f. Use the function Linmod in MATLAB® to find the linearized models for
the equilibrium states. Compare with the linearization that you derived.
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sin(-) Gf(s)

v

FIGURE P1.4 The phase-locked loop.

1.4: A phase-locked loop system can be represented by the block diagram of Figure
P1.4. Let {A,B,C} be a state-space representation of the transfer function G(s).
Assume that all eigenvalues of A have negative real parts, G(0)20 and ©; is
constant. Let z be the state of the realization {A,B,C}.

a. Show that:

z=Az+ Bsine

e=—Cz

is a state equation for the closed-loop system.
b. Find all equilibrium states of the system.
c. Show that if G(s) = 1/(ts+1), the closed-loop model coincides with the model
of a pendulum equation. ™
1.5: A synchronous generator connected to an infinite bus can be modeled by:

M&=P—D§-nE, sind

TE:/ =-—E, +Nacosd+Ep,

where 8 is the angle in radians, E, is voltage, P is mechanical input power, Ej is
field voltage (input), D is damping coefficient, M is inertial coefficient, T is the time
constant, and m;,M, , and M, are constant parameters.

a. Usingd, &,and E, as state variables, find the state equation.

b. Suppose that 1 is relatively large so that Eq =0. Show that assuming E,
to be constant reduces the model to a pendulum equation.

c¢. For the simplified model, derived in Problem 1.5(b), find all equilibrium
points. &

1.6: A mass-spring system is shown in Figure P1.6. The displacement, y, from a
reference point is given by :

my+F;+F,=F



