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PREFACE

The contemporary analysis on complex manifolds has been developed by
means of the theory of coherent analytic sheaves (see, for instance,
[Gunning/Rossi 1865 and Grauert/Remmert 1971,1877,19841) and/or harmonic
analysis (see, for instance, [Chern 1956, Kohn 1964, Hdérmander 19686,
Morrey 1966, Wells 1973]). However, the first fundamental contributiops
to the function theory of several complex variables, obtained in the
period 1936-51 by K.Oka, were based on the classical constructive method
of integral representations (see [Oka 1984]).

In the seventies this constructive approach has had a come-back in
order to obtain in a strengthened form (with uniform estimates) the main
results of the theory of functions on complex manifolds. A systematic
development of the function theory in Cc? which uses integral formulas as
the principal tool was given in the -books [Henkin/Leiterer 1984 and
Rande 1986].

The constructive method of integral representations - is working with
success also in several other fields of complex analysis: Cauchy-Riemann
cohomology of complex manifolds, holomorphic vector bundles 6n complex
manifolds, analysis on Cauchy-Riemann manifolds, Radon-Penrose trans-
form, inverse scattering problem.

The authors intend to write a book where these fields will be pre-
sented from the viewpoint of integral formulas. The present monograph is
a tentative version of the first part of that book. Here we develop in

detail the basic facts on the Cauchy-Riemann cohomtlogy of complex
manifolds, where the emphasis is on finiteness, vanishing, and separa-
tion theorems for a class of complex manifolds which lies between the
Stein, and the compact manifolds. Theorems A and B of Oka-Cartan

for Stein manifolds as well as the finiteness theorems of Kodaira for
compact, and Grauert for pseudoconvex manifolds appear as special cases

of more general theorems.

The theory developed in the present monograph was mainly obtained in
the articles [Andreotti/Grauert 1962, Andreotti/Vesentini 1865, Andreot-
ti/Norguet 1966, Kohn/Rossi 1965, and HOrmander 1965] (it is astonishing



that these remarkable results did not as yet enter into books). The
novelty added here consists in new proofs based on integral formulas.

As in the case of the theory of functions in C“, this makes it possible
to prove all basic facts in a strengthened form: uniform estimates for
solutions of the Cauchy-Riemann equation for differential forms on
strictly g-convex and strictly q-concave domains, uniform approximation
and uniférm interpolation for the 3-cohomology classes on strictly
q-convex domains, solution of the E.Levi problem for the d-cohomology
with uniform estimates, the Andreotti-Vesentini separation theorem with
uniform estimates etc. A part of these results with uniform estimates
was obtained already in the seventies [Fischer/Lieb 1974, Ovrelid 1978,
Henkin 1977, Lieb 1978]. Some of these reusults are new.

These results with uniform estimates admit important applications in
the theory of holonérphic vector bundles and the theory of the tangent
Cauchy-Riemann equation. Such applications will be the subject of the
following parts of the pending book mentioﬁed above - elements of this
are contained in the articles [Ajrapetjan/Henkin 1984 and Henkin/Leite-
rer 1986]. Moreover, in the following parts of that book, we intend to
present some developments of the Andreotti-Grauert theory in connection
with the Radon-Penrose transform - elements of this can be found in
[Henkin 1983, Henkin/Pol jakov 1986 and Leiterer 1986].

Note. Further on the book [Henkin/Leiterer 1984] will be refered to as
[H/L]. The present monograph may be considered as a continuation of
[H/L]. However, without proof, we use only results from the elementary
Chapter 1 of [H/L]. Moreover, all basic results of Chapter 2 of [H/L],
which is devoted to the theory of funotions on completely pseudoconvex
manifolds (= Stein manifolds, after solution of the E.Levi problem), are
obtained anew, as the special case q=n-1 of Chapter 3 of the present

work.

Acknowledgments. We thank G.Schmalz for reading portions of the
manuscript, catching many errors. We wish to thank also the Akademie-

-Verlag'Berlin, and particulary Dr.R.Héppner, for support and
cooperation.
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.

CHAPTER I. INTEGRAL FORMULAS AND
FIRST APPLICATIONS

Summary. This chapter is devoted to the general theory of integral
representation formulas for solutions of the Cauchy-Riemann equation in
C". In Sect. O we introduce notations and standard definitions. In Sect.
1, first we recall basic facts about the Martinelli-Bochner-Koppelman
formula, where, for some of the proofs we refer to Chapter 1 in [H/L].
Then, by means of this formula, we prove the regularity of the 8-opera-
tor as well as the Kodaira finiteness theorem on compact complex mani-
folds. Sect. 2 is devoted to the Cauchy-Fantappie formula - a generali-
zation of the Martinelli-Bochner-Koppelman formula. (For a direct proof
of this formula, again we refer to Chapter 1 in [H/L]. Notice also that
in Sect. 3 of the present work the full proof of a more general formula
will be given.) Then, as an application of the Cauchy-Fantappie formula,
we prove the Poincaré 3-lemma. At the end of Sect. 2, we recall the
arguments which lead from the Poincaré 3-lemma and the regularity of the
d-operator to the Dolbeault isomorphism and the theorem on smoothing of
the 8-cohomology. In Sect. 3 we prove a generalization of the Cauchy-
-Fantappie formula, which will be called the piecewise Cauchy-Fantappie
formula. This formula is especially useful for domains with a boundary
which consists of several pipces each of which has its own "advantages”
as, for instance, g-convexity, g-concavity, Levi flatness. In Chapters
III and IV, appropriate special cases of this formula will be used to
solve the Cauchy-Riemann equation with uniform estimates.

0. Generalities about differential forms and currents

0.1. Some notations. € is the complex plane, and € is the n-dimensional
complex Euclidean space. If x¢C”, then by Xys Xy, We denote the cano-
nical complex coordinates of x. We write

@¥> = xyyyt...4xy,  and x| = (|x1|2+...+lxn|2)1/2



for x,yecn. R is the real line, and R® is the n-dimensional real Eucli-
dean space.

The word “"domain"” means an arbitrary (not necessarily connected) open
set. We write A == B to say that A is a relatively compact subset of B.
The word "neighborhood" always means an open neighborhocod.

.

The notion of a differential form (or a form) will be used for
differential forms with measurable complex-valued coefficients. The de-
gree of a differential form f will be denoted by deg f, and its support
by supp f. Continuous forms will be called also C0 forms. Ck forms
(k=1,2,...,00) are forms with k times oontinuously differentiable coef-

ficients.
A form f defined on a complex manifold is called an (r,s)-form (or a
form of bidegree (r,s)) if, with respect to local holomorphic coordi-

nates 24,020,

£ = £ ydzadz®. (0.1)

IJI=§;;KI=S

Here the summation is over all strictly increasing r-tuples
J=(J1,...,Jr) and all strictly increasing s-tuples K=(k1,...,ks) in

r 1
coefficients fJK are complex-valued functions.

{1,...,n}, ag’ = dzJA...AdzJ , azk = dEkI\...Adik , and the
1 s

As usual, by d we denote the exterior differential operator. On
complex manifolds, by 3 we denote the Cauchy-Riemann operator, and we
set 3:=d-93, i.e. if f is as in (0.1), then

; n afJ

3 := y 3 — 4z adzthaz®
|Ji=r, IKi=s 1=1 321
and
s n_of
of := K 4z AdZQAdEK,
Iler:,H(I:s g %, !
where
22, 2) w222 )
azl 2 atl atl*n 321 2 atl at1+n

with t1:= real part of zl,and t1+n:= imaginary part of z)-

Remark. The main subject considered in this monodraph are differen-
tial forms with values in holomorphic vector bundles (for the notion of

10



forms with values in vector bundles, see, for instance [Wells 1973]).
Since any (s,r)-form with values in a holomorphic vector bundle E may be
identified with a (0,r)-form with values in the holomorphic vector
bundle A"OGE, where/\”'o is the sth exterior power of the holomorphic
cotangent bundle, in the most .onse\q, we shall restrict ourselves to
(0,r)-forms (but with coeffiocients in arbitrary holomorphic vector bund-
les).

0.2. Integration with respect to .a part of the variables. Suppose X, Y

are real C* manifolds, and f is a differential form on XXx<Y. Let
m = dim RX, n = dim xY and let ¥,,...,¥, be local C! coordinates in
some open U € Y. Consider the unique representation

 2(x,¥) =¥L !I(x.y)/\dvl. xeX, yeU,

where the summation is over all strictly increasing r-tuples
I=(i,,....1,) in {1,..,n} with r € deg £, dy':= dy; A...Ady; , and
1 r

fl(x,y) is a differential form of degree deg f - r on X which depends on
y€U. If X is oriented and the integrals fx fI(x-.y) exist for all fixed
veU and any strictly increasing r-tuple I in {1,...,n} with r = deg £

- m, then we define

J £(x,¥) = L[—" (J f;(x.y)) ay!,  yeu,

X xeX

where the summation is over all strictly increasing r-tuples in
{1,...,n} with r = deg f - m. The result of this integration is a
differential form of degree deg £ -~ m on U.

This form is independent of the éhoioe of the local coordinates
L STRERNE Therefore fx f(x,y) is well-defined for all yeY. Notice
that, by thisdefinition, fx £(x,y) = 0 if £ does not contain monomials
which are of degree m in x.
0.3. The absolute value |f| of a differential form f of maximal degree.
Let X be an oriented real C1 manifold of real dimension m, and let f be
a differential form of degree m on X. Then by If| we denote the dif-
ferential form on X vhich is defined as follows: If Xys..-sX, are
positively oriented (!:l coordinates in some open U C X and F is the
complex-valued function on U with £ = FdxlA. . .Adx-, then

1£1:= {FldxA. . .Adxy on U.

We remark that if f is integrable, then

11 -



|If|sflf|-

X X
If & is a second differential form of degree m on X, then we write
gl < 1fl on X

if the following condition is fulfilled: If Xysr-eesX are positively
oriented C1 coordinates in some open U € X, and G, F are the functions
on U with g = delA...Adxh and f = FdxlA...Adxm, then |Gl<IF} on U.

0.4. The Riemannian norm of a differential form at a point. Let f be a
differential form of degree m defined on a domain D C R®. If m=0, i.e. f
is a complex valued function, then we writellf(z)"=|f(z)|. zeD. If m>0,
Xy .- 02X, are the canonical coordinates in mp,and

f = E b i dxif"'Adxi'
1511<...<1m5n

then we define

1/2
"f(z)”=[ > Ifil....,im(z)lz] ; 2€D.

1511<...<1m5n

Now let f be an arbitrary real C1 manifold. Then we choose a locally
finite open covering {UJ} of X together with 01 coordinates xg,...,xg
on U;. Further, we choose a continuous partition of unity {23) subordi-
nated to {UJ}' If £ is a differential form in a neighborhood of some

point zeX and

£(z) = S £

; (2)dx] (2)a..adx] (2)
16, < cipen oo i 1 n

> 1

for all j with zer, then we define

1/2
2

(z) .
,...,1m I ]

llecer]| = ; Zj(z)[ s 2]

1¢1, < ki< 1

Of course, this definition depends on the choice of the local coordi-
nates as well as on the choice of the partition of unity. Any norm

obtained in this way will be called a Riemannian norm on X (Riemannian
metric). If [|-[|, and ||-], are two Riemannian norms on a c! menifold X,

12



then, clearly, for any compact set K <= X, one can find constants c>0
and C<oo such that

ellecally < feeally < cleeolly (0.2)
for all x¢K and all differential forms f on X. In the present monograph,
in all cases where we meet Riemannian norms, estimate (0.2) ensures
independence of the special choice of this norm. Therefore we shall use
the following

Convention. The cotangent bundle of any real 01 manifold is assumed
to be endowed with an (arbitrary but fixed) Riemannian norm. [J

Finally, we want to generalize the notion of a Riemannian norm to
forms with values in vector bundles. Let E be a vector bundle of rank N
over a real C1 manifold X. Then a Riemannian norm in E is given by a
locally finite open covering {UJ} of X together with a family of vector
bundle trivializations

Elu; = upe" (0.3)

as well as a C1 partition of unity {13} subordinated to {Uj}. If £ is an

E-valued differential form (i.e. a measurable section of/\nQDE, where m
m is the degree of f and /\m the mth exterior power of the‘cotangent
bundle of X) in a neighborhood Uz of some point zeX and (fJ,...,fg) is
the vector of differential forms on Uzr\U. which represents flel\UJ
via (0.3), then we define the Riemannian norm l£(2)ll of £(z) by

"f(z)”= ; zj(z).(l)::l”fg(z)” 2)1/2, zeX. (0.4)

(The norms nfg(z)n are well-defined, since, by our Convention, X is
already endowed with a Riemannian norm.) The same arguments as above now
lead to the following convention (which will be used throughout this
monograph) : .

Convention. If E is a vector bundle over a real C* manifold X, then
we assume that E is endowed with an (arbitrary but fixed) Riemannian

1

norm.

0.5. Determinants of matrices of differential forms. Let A = (aij)? 3=1
be a quadratic matrix whose elements aij are differential forms. Then
we define a differential form det A by setting

det A =3  san(Blagy) ; A Aegy o
&

where the summation is over all permutations © of {1,...,n} and sgn(6)

13



is the signature of 6. Under this definition the usual relations between

row operations (the first index is the row index) and determinants hold

true. Therefore,

as in the case of usual determinants one obtains that

if A is an nxn matrix of differential forms and Z is an n¥n matrix of

complex-valued funotions,

then det ZA = det Z det A. Notice that,

in

general, det AZ # det A det Z. Further, it is possible that det A = O

although

some of the columns of A are equal. For references,

in the

following proposition we collect some useful facts about such determi-

nants (the proofs are obvious):

0.6. Proposition.

{i) The determinant of a quadratic matrix of differen-

tial forms is a multi-linear map of the columns with respect to linear

combinations whose coefficients are

(ii) If A is an nxn-matrix of differential forms and if,

complex-valued functions.

for some

1<k(l<n, aik=zibk and ail=zib1 for all i, where bk‘ b1 are arbitrary

differential forms and z;

are complex-valued functions,

then det A = O.

(iii) Let a; and aj be two columns in a quadratic matrix A of dif-

ferential forms such that all forms

all forms in a are of the same degree dj‘
obtained from A by interchanging these two columns.

det A
- det A

det ; = {

0.7. Definition. Let 1<m¢n be integers,

of differential forms of the length

in a; have the same degree d.1 and
Further, let A be the matrix
Then

if d]._—t:l.j is even

if di—dj is odd.

let a, ..
n, and let LPERE

e be column vectors
8y be integers

with 84+ .. +8, =n. If all 8, ere non-negative, then we set

s, Sy
det(;?,...,;;) = det(al,...,al,...,am,..I,am),
sy times sy times

and if at least one of the inteders
write

8y Sm
det(al....,an)

0.8. The forms ()u) and Y (v). Let
u=(uy,...,up ), vE(V,, ...,V ) be two
Then we set

14

8 is negative, then we

X be a real C1 manifold, and let
Cn—valuod 01 maps defined on X.



w(u) = dulA /\dun = 0T det(du)
and
n - n-1
» _ j+1 _ 1 —
w’(v) = §=1(-1)J devll\. e :; “ .Aan = oDt det(v, dv)

on X, where . means that va. must be omitted.

J
If X, Y are two real 01 manifolds and the points in X and Y are

denoted by x and y, respectively, then the exterior differential opera-
tor with respect to x on XxY will be denoted by dx. the exterior diffe-
rential operator with respect to y on XxXY will be denoted by d_, and
the "full" exterior differential operator d on X XY then will be denoted
also by dx,y‘ Analogously, we use the notations ux(u). U,'((v), Dx’y(u).

u”(’y(v), and, if X, Y are complex manifolds, the notations ax, '5x, ax,y’

X,y

0.9. Proposition. If X is a real C1 manifold, v:iX—C” is a C1 map,

and F:X—=C is a C1 function, then o’ (Fv) = Fw’ (v).

Proof. By Proposition 0.6 (i) and (ii) we have

n-1 n-1 n-1 n-1
det(Fv,d(Fv)) = det(Fv, (dF)v+Fdv) = det(Fv,Fdv) = Fn(v, dvy. T

0.10. Proposition. If X is a real C1 manifold and u, v are two C"-valued

C1 maps on X, then the form

v
<v,uwd>

W’ (Viaw(u) ( )A -
- W w(u
<v,u>n

(this equation holds true by Proposition 0.9) is closed for all xeéX
with <v(x),u(x)> f 0. In particular, if moreover <v,u>=1 on X, then
w'(V)Ap(u) is closed on X.

Proof. We can assume that <v,u> = 1 on X (otherwise we have to
replace v by v/<v,u>). Then 0 = d<v,u> = Y_ vidu1 + Yy uidvi. Hence
then the forms dvl, - .,dvn,dul, vy ,dun are linearly dependent, and
therefore dw’ (V)aw(u) = wXv)aw(u) = 0. [J

0.11. Spaces of differential forms. Here we collect the definitions of
some spaces of differential forms which will be often used in this
monograph. Let X be a complexmanifold, and M C X a subset which is

16



contained in the closure of the set of inner points of M.
For any differential form f on M, we set (cf. Sect. 0.4 for the
definition of the Riemannian norm {| £(z)}|)

£l = sup Il £(2) || (0.5)
o.M z2eM

if O<oe<l. (0.8)

ft(z)-£(x)ll
Izl = el + sup
¢, M oM SUP, -

If O0<oc<l, then a form f on M is called o.-HSlder continuous on M if

b4 < oo for all compact sets K ¢ M. (0.7)
ot , K <

The notion of a Ca‘form (resp. of a form of class Cd) on M will be

used for any 0<ot<oo, where:

0

C” stands for “continuous”;

for k=1,2,...,00, we say f is a Ck form on M if f is a Ck form in the
interior of M such that all derivatives of order <k+l of f admit a con-
tinuous extension onto M;

if O<o¢<land k is a non-negative integer, then we say f is a Ckﬂ"

form on M if f is a CX form on M such that all derivatives of order <k
of f are o.-H8lder continuous on M.

We use the following notations:

L:O(M) is the space of all bounded differential forms on M. Notice
that if (and only if) M is relatively compact in X, then L$°(M) does
not depend on the choice of the Riemannian norm on X;

C°"(M) is the space of all c® forms on M (0<0L<00);
* 20

Z‘:{'(M) is the subspace of all feC‘:‘(M) with 8£=0 in the interior of
M (0<ot<oo);

Eg . (M)is the subspace of all féZf’(M) such that f=3u for some
uecP) (0<ov, B<oo) ;
EQY (M):= ER¥ 7%(M)  (0<o¢<oo).

If A is one of the symbols L%, ¢%, 7%, B ™% or E®, then A (M)
is the subspace of all forms of degree m in A (M) (1<m<2n), and As r(M)
is the subspace of all (s,r)-forms in A (M) (1<s,r<2n).

By C°°0(M) (0<o(¢00) we denote the space of all complex-valued
Ca'funetions on M which are holomorphic in the interior of M. If M is
open, then O(M) is the space of all holomorphic functions on M.

If B is an arbitrary space of differential forms on M, then by [B]0

16



