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Although each of these planes is
rather large, from a distance their
motion can be modeled as if each
plane were a particle




C H A P T E R

12

Kinematics of a Particle
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Chapter Objectives

e To introduce the concepts of position, displacement,
velocity, and acceleration.

e To study particle motion along a straight line and
represent this motion graphically.

¢ To investigate particle motion along a curved path using
different coordinate systems.

e To present an analysis of dependent motion of two .
particles.

e To examine the principles of relative motion of two
particles using translating axes.

12.1 Introduction

Mechanics is a branch of the physical sciences that is
concerned with the state of rest or motion of bodies subjected
to the action of forces. The mechanics of rigid bodies is
divided into two areas: statics and dynamics. Statics is
concerned with the equilibrium of a body that is either at rest
or moves with constant velocity. The foregoing treatment is
concerned with dynamics which deals with the accelerated
motion of a body. Here the subject of dynamics will be
presented in two parts: kinematics, which treats only the
geometric aspects of the motion, and kinetics, which is the
analysis of the forces causing the motion. To develop these
principles, the dynamics of a particle will be discussed first,
followed by topics in rigid-body dynamics in two and then
three dimensions.
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Historically, the principles of dynamics developed when it was
possible to make an accurate measurement of time. Galileo Galilei
(1564-1642) was one of the first major contributors to this field. His
work consisted of experiments using pendulums and falling bodies. The
most significant contributions in dynamics, however, were made by Isaac
Newton (1642-1727), who is noted for his formulation of the three
fundamental laws of motion and the law of universal gravitational
attraction. Shortly after these laws were postulated, important
techniques for their application were developed by Euler, D’ Alembert,
Lagrange, and others.

There are many problems in engineering whose solutions require
application of the principles of dynamics. Typically the structural design
of any vehicle, such as an automobile or airplane, requires consideration
of the motion to which it is subjected. This is also true for many
mechanical devices, such as motors, pumps, movable tools, industrial
manipulators, and machinery. Furthermore, predictions of the motions
of artificial satellites, projectiles, and spacecraft are based on the theory
of dynamics. With further advances in technology, there will be an even
greater need for knowing how to apply the principles of this subject.

Problem Solving. Dynamics is considered to be more involved than
statics since both the forces applied to a body and its motion must be
taken into account. Also, many applications require using calculus, rather
than just algebra and trigonometry. In any case, the most effective way
of learning the principles of dynamics is to solve problems. To be
successful at this, it is necessary to present the work in a logical and
orderly manner as suggested by the following sequence of steps:

1. Read the problem carefully and try to correlate the actual physical
situation with the theory studied.

2. Draw any necessary diagrams and tabulate the problem data.

3. Establish a coordinate system and apply the relevant principles,
generally in mathematical form.

4. Solve the necessary equations algebraically as far as practical; then,
use a consistent set of units and complete the solution numerically.
Report the answer with no more significant figures than the
accuracy of the given data.

5. Study the answer using technical judgment and common sense to
determine whether or not it seems reasonable.

6. Once the solution has been completed, review the problem. Try to
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible.
Being neat generally stimulates clear and orderly thinking, and vice versa.
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12.2 Rectilinear Kinematics: Continuous Motion

We will begin our study of dynamics by discussing the kinematics of a
particle that moves along a rectilinear or straight line path. Recall that
a particle has a mass but negligible size and shape. Therefore we must
limit application to those objects that have dimensions that are of no
consequence in the analysis of the motion. In most problems, one is
interested in bodies of finite size, such as rockets, projectiles, or vehicles.
Such objects may be considered as particles, provided motion of the body
is characterized by motion of its mass center and any rotation of the
body is neglected.

Rectilinear Kinematics. The kinematics of a particle is characterized
by specifying, at any given instant, the particle’s position, velocity, and
acceleration.

Position. The straight-line path of a particle will be defined using a r
single coordinate axis s, Fig. 12—1a. The origin O on the path is a fixed
point, and from this point the position vector r is used to specify the 0 b
location of the particle P at any given instant. Notice that r is always s JI
along the s axis, and so its direction never changes. What will change is
its magnitude and its sense or arrowhead direction. For analytical work
it is therefore convenient to represent r by an algebraic scalar s, (a)
representing the position coordinate of the particle, Fig. 12-1a. The

magnitude of s (and r) is the distance from O to P, usually measured in

meters (m) or feet (ft), and the sense (or arrowhead direction of r) is

defined by the algebraic sign on s. Although the choice is arbitrary, in this

case s is positive since the coordinate axis is positive to the right of the

origin. Likewise, it is negative if the particle is located to the left of O.

P

|
o

Position

Displacement. The displacement of the particle is defined as the r
change in its position. For example, if the particle moves from P to P’, r

Fig. 12-1b, the displacement is Ar =r’ — r. Using algebraic scalars to
represent Ar, we also have = 0

=%
As=5"—35 ' s'

Here As is positive since the particle’s final position is to the right of its Displacement
initial position, i.e., s’ > 5. Likewise, if the final position is to the left of
its initial position, As is negative.

Since the displacement of a particle is a vector quantity, it should be Fig. 12-1
distinguished from the distance the particle travels. Specifically, the
distance traveled is a positive scalar which represents the total length of
path over which the particle travels.

(b)
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Velocity. If the particle moves through a displacement Ar from P to
P’ during the time interval Az, Fig. 12-1b, the average velocity of the
particle during this time interval is

__Ar
vavg - E

If we take smaller and smaller values of Az, the magnitude of Ar becomes
smaller and smaller. Consequently, the instantaneous velocity is defined
asv = Allim0 (Ar/At), or

—v—-> dr
i P P N-= at
[ o o s t
0 |
!—m —‘ Representing v as an algebraic scalar, Fig. 12-1¢, we can also write
Velocity
ds
© (=) v="_ (12-1)

Since Ar or dt is always positive, the sign used to define the sense of
the velocity is the same as that of As or ds. For example, if the particle
is moving to the right, Fig. 12-1c, the velocity is positive; whereas if it
is moving to the /left, the velocity is negative. (This is emphasized here
by the arrow written at the left of Eq. 12-1.) The magnitude of the
velocity is known as the speed, and it is generally expressed in units of
m/s or ft/s.

Occasionally, the term “average speed” is used. The average speed is
always a positive scalar and is defined as the total distance traveled by
a particle, s, divided by the elapsed time A i.e.,

St
(vsp)avg = E

For example the particle in Fig. 12-1d travels along the path of length
srin time Az, so its average speed is (Vsp)ave = S7 /AL but its average
velocity is v,yg = —As/At.

Average velocity and
Average speed
(@)

Fig. 12-1
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Acceleration. Provided the velocity of the particle is known at the
two points P and P’, the average acceleration of the particle during the
time interval At is defined as

ol
Here Av represents the difference in the velocity during the time interval v v
At,i.e., Av =v' —v, Fig. 12-1e.

The instantaneous acceleration at time ¢ is found by taking smaller and
smaller values of Ar and corresponding smaller and smaller values of Ay, (e)
so thata = }II_IIIO (Av/Ar) or, using algebraic scalars,

Acceleration

—
l P P’
o QO G s
|
& dv v v’
(=) a= ) (12-2)
Deceleration :

(t)

Substituting Eq. 12-1 into this result, we can also write

(S
)
©

()

S
Il

QL
=
[

Both the average and instantaneous acceleration can be either positive
or negative. In particular, when the particle is slowing down, or its speed
is decreasing, it is said to be decelerating. In this case, v’ in Fig. 12--1f is
less than v, and so Av = v' — v will be negative. Consequently, a will also
be negative, and therefore it will act to the /eft, in the opposite sense to
v. Also, note that when the velocity is constant, the acceleration is zero
since Av = v — v = 0. Units commonly used to express the magnitude of
acceleration are m/s” or ft/s>.

A differential relation involving the displacement, velocity, and
acceleration along the path may be obtained by eliminating the time
differential dr between Eqgs. 12-1 and 12-2. Realize that although we can
then establish another equation, by doing so it will not be independent
of Egs. 12-1 and 12-2. Show that

(=) ads=vdv (12-3)
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Constant Acceleration, @ = a.. When the acceleration is constant.
each of the three kinematic equations a. = dv/dt,v = ds/dt.and a. ds =
v dv may be integrated to obtain formulas that relate a,, v, s, and «.

Velocity as a Function of Time. Integrate a. = dv/dr, assuming
that initially v = vy when r = 0.

v 1
f dv = J’ adt
Uy [H]

(=) v=1vy+adt (12-4)
Constant Acceleration

Position as a Function of Time. Integrate v = ds/dt = v, + a.,
assuming that initially s = s, when ¢ = 0.

5 ! .
f ds =j (v + at) dt
5y 0 5

() s =5 + vt + 3a4° (12-5)
Constant Acceleration

Velocity as a Function of Position. Either solve for ¢ in Eq. 12-4
and substitute into Eq. 12-5, or integrate v dv = a, ds, assuming that
initially v = vy at s = sq.

v 5
j vd‘u=f a.ds

(£) v? = v+ 2a.(s — 50) (12-6)
Constant Acceleration

This equation is not independent of Egs. 12—-4 and 12-5 since it can be
obtained by eliminating ¢ between these equations.

The magnitudes and signs of sq, vy, and a., used in the above three
equations are determined from the chosen origin and positive direction
of the s axis as indicated by the arrow written at the left of each equation.
Also, it is important to remember that these equations are useful only
when the acceleration is constant and when t =0, s =55, V=17, A
common example of constant accelerated motion occurs when a body
falls freely toward the earth. If air resistance is neglected and the distance
of fall is short, then the downward acceleration of the body when it is
close to the earth is constant and approximately 9.81 m/s* or 32.2 ft/s”.
The proof of this is given in Example 13-2.
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Important Points

Dynamics is concerned with bodies that have accelerated motion.
Kinematics is a study of the geometry of the motion.

Kinetics is a study of the forces that cause the motion.

Rectilinear kinematics refers to straight-line motion.

Speed refers to the magnitude of velocity.

Average speed is the total distance traveled divided by the total
time. This is different from the average velocity which is the
displacement divided by the time.

The acceleration, a = dv/dt, is negative when the particle is slowing
down or decelerating.

A particle can have an acceleration and yet have zero velocity.
The relationship @ ds = v dv is derived from a = dv/dt and
v = ds/dr, by eliminating dt.

Procedure for Analysis

The equations of rectilinear kinematics should be applied using the
following procedure.

Coordinate System

Establish a position coordinate s along the path and specity its fixed
origin and positive direction.

Since motion is along a straight line, the particle’s position, velocity.
and acceleration can be represented as algebraic scalars. For
analytical work the sense of s, v, and a is then determined from their
algebraic signs.

The positive sense for each scalar can be indicated by an arrow shown
alongside each kinematic equation as it is applied.

Kinematic Equations

If a relationship is known between any twe of the four variables
a, v, s and t, then a third variable can be obtained by using one of
the kinematic equations, a = dv/dt, v = ds/dt or a ds = v dv, which
relates all three variables.*

Whenever integration is performed, it is important that the position
and velocity be known at a given instant in order to evaluate either
the constant of integration if an indefinite integral is used, or the
limits of integration if a definite integral is used.

Remember that Egs. 12-4 through 12-6 have only a limited use.
Never apply these equations unless it is absolutely certain that the
acceleration is constant.

*Some standard differentiation and integration formulas are given in Appendix A.

During the time this rocket undergoes
rectilinear motion, its altitude as a function
of time can be measured and expressed as
s = s(r). Its velocity can then be found using
v=ds/dt, and its acceleration can be
determined from a = dv/dt.
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EXAMP L [ D

The car in Fig. 12-2 moves in a straight line such that for a short time
its velocity is defined by v = (3t> + 2r) ft/s, where ¢ is in seconds.
Determine its position and acceleration when ¢ = 3s.Whent = 0,5 = 0.

Fig. 12-2
Solution

Coordinate System. The position coordinate extends from the fixed
origin O to the car, positive to the right.

Position. Since v = f(r), the car’s position can be determined from
v = ds/dt, since this equation relates v, s, and ¢. Noting that s = 0 when
t = 0, we have*

_ds

(H) P (32 + 21)

< b
&
I

f (3t + 2t) dt
0

r

£+

0
s= P42
When =35,
s = (3)3 + (3)2 = 36 ft Ans.

Acceleration. Knowing v = f{t), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and t.

() a=%=%(3t2+2t)
=6f+2
Whent =35,
a=6(3)+2=20ft/s>—> Ans.

The formulas for constant acceleration cannot be used to solve this
problem. Why?

*The same result can be obtained by evaluating a constant of integration C rather than
usin% definite limits on the integral. For example, integrating ds = (37 + 21)dt yields
5=

”

t” + - + C. Using the condition that at = 0,5 = 0, then C = 0.
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EXAMPLE T

A small projectile is fired vertically downward into a fluid medium
with an initial velocity of 60 m/s. Due to the resistance of the fluid
the projectile experiences a deceleration equal to a = (—0.4v°) m/s?,
where v is in m/s. Determine the projectile’s velocity and position
4 s after it is fired.

Solution

Coordinate Sysrem. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.

Velocity. Here a = f(v) and so we must determine the velocity as a e

function of time using a = dv/dt, since this equation relates v, a, e
and r. (Why not use v = vy + a.t?) Separating the variables and
integrating, with v, = 60 m/s when ¢ = 0, yields

dv e
+4 =—=—04¢
(+4) = v
J'—04v .[dt
1 (1)1”
——l—]=| =t=0
—0.4\-2/) v?|

é[% (61))] !

¥ = {[(—6:)—)2 + 0.8t}_1/2} m/s

Here the positive root is taken, since the projectile is moving
downward. When ¢ = 4 s,

v=0.559m/s{ Ans.
Position. Knowing v = f{t), we can obtain the projectile’s position

from v = ds/dt, since this equation relates s, v, and . Usmg the initial
condition s = 0, when ¢ = 0, we have

ds 1 1/2
+1 =— -
(+49 d [(60)2 o]
-1/2
f ds = f {(60)2 + 08t] dt
21 1 112
= — =+ 0.
0.8[(60)2 os] ]
1 VI
= — + 0. =
70 4{[(60)2 0 8’] 60} .
Whent=4s,

s=443m Ans.

“w—10Q

_I_U-

Fig. 12-3
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EXAMPLE V2™

During a test a rocket is traveling upward at 75 m/s, and when it is
40 m from the ground its engine fails. Determine the maximum height
sg reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s® due to gravity. Neglect the effect of air
resistance.

Solution

Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12-4.

tg=

Maximum Height.- Since the rocket is traveling upward, v, =
y +75 m/s when t= 0. At the maximum height s = 55 the velocity
vg = 0. For the entire motion, the acceleration is a. = —9.81 m/s’
! (negative since it acts in the opposite sense to positive velocity or
| positive displacement). Since a. is constant the rocket’s position may
be related to its velocity at the two points A and B on the path by
using Eq. 12-6, namely,

7 (+T v

_ ﬂ | s
A

\ Velocity. To obtain the velocity of the rocket just before it hits the

Il

B=v4+2a(sp — sa)
0= (75 m/s)* + 2(—9.81 m/s%)(sp — 40 m)
=327 m Ans.

si=d0m | ground, we can apply Eq. 12-6 between points B and C, Fig. 12-4.
fc ;0 | +D ve = v+ 2a,(sc — sp)
v =0+ 2(—9.81 m/s*)(0 — 327 m)
" Fig. 124 ve=—80.1m/s =80.1 m/s Ans.

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C,
1.8

(+ T) ve=v4+ 2a.(sc — s4)
= (75 m/s)* + 2(—9.81 m/s*)(0 — 40 m)
ve=—80.1 m/s = 80.1 m/s

Note: It should be realized that the rocket is subjected to a
deceleration from A to B of 9.81 m/s and then from B to C it is
accelerated at this rate. Furthermore, even though the rocket
momentarily comes to rest at B (vg = 0) the acceleration at B is
9.81 m/s* downward!
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EXAMPLE 70

A metallic particle is subjected to the influence of a magnetic field
as it travels downward through a fluid that extends from plate A to
plate B, Fig. 12-5. If the particle is released from rest at the midpoint
C, s = 100 mm, and the acceleration is a = (4s) m/s”, where s is in
meters, determine the velocity of the particle when it reaches plate B,
s = 200 mm, and the time it needs to travel from C to B.

Solution

Coordinate System. As shown in Fig. 12-5, s is taken positive
downward, measured from plate A.

Velocity. Since a = f(s), the velocity as a function of position can be
obtained by using v dv = a ds. Why not use the formulas for constant
acceleration? Realizing that v = 0 at s = 100 mm = 0.1 m, we have

(+4) vdv=ads

J vdv = 4s ds
0

0.1

1,2 i = fsz i
2o 20 o
v=2(s*-001)"2 1)
At s =200 mm = 0.2 m,
vg = 0.346 m/s = 346 mm/s | A, Fig. 12-5

The positive root is chosen since the particle is traveling downward.
i.e., in the +s direction.

Time. The time for the particle to travel from C to B can be obtained
using v =ds/dr and Eq. 1, where s =0.1 m when ¢t=0. From
Appendix A,

(+4) ds =vdt
= 2(s* — 0.01)"? dr

) ds t
== | 2d
fm (52 — 0.01)" f(, !
In(Vs?* = 001 +s)
0

=2t
0.1

In(Vs? — 0.01 +s) +2.30 = 2t

Ats =200 mm = 0.2 m,

. _ In(V(02F = 001) +02) +2.30
2

3

= 0.658 s Ans.
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EXAMPLEDEET

s=-40m s=6.12m
===
> o N\
| \ '
t=2s t=0s t=3.5s
(a)
v (m/s)
v=3%-61
f/ 1(s)
(0,0) (2s,0)
(1s, =3 m/s)
(b)
Fig. 12-6

A particle moves along a horizontal path with a velocity of v =
(3t* — 6f) m/s, where ¢ is the time in seconds. If it is initially located
at the origin O, determine the distance traveled in 3.5 s, and the
particle’s average velocity and average speed during the time interval.

Solution

Coordinate System. Here we will assume positive motion to the
right, measured from the origin O, Fig. 12-6a.

Distance Traveled. Since v = f{t), the position as a function of time
may be found by integrating v = ds/dr with t = 0,5 = 0.

(=) ds=vdt
= (3¢ - 6t) dt
5 14 I t
fds=3j:2d:—6jrdz
0 0 0
s=(-3%)m (1)

In order to determine the distance traveled in 3.5 s, it is necessary
to investigate the path of motion. The graph of the velocity function,
Fig. 12-6b, reveals that for 0 =t < 2 s the velocity is negative, which
means the particle is traveling to the left, and for ¢t > 2 s the velocity
is positive, and hence the particle is traveling to the right. Also,v = 0
at t = 2 s. The particle’s position when ¢t = 0,7 =2s,and ¢ = 3.5 s can
be determined from Eq. 1. This yields

Sl,_—_o =0 5|1=Zs =—40m .S'|,=345s =6.125m
The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is
sT=40+40+6125=14125m=141m Ans.

Velocity. The displacement fromt=0tot=35s1is
As = S|,=3.5s o S|,=0 =612—-0=6.12m
and so the average velocity is

v —éﬁ——ﬁ'-l_i-=1.75m/s—> Ans.

The average speed is defined in terms of the distance traveled st. This
positive scalar is

s 14.125
Vg = & =

= A "35-0 = 4.04 m/s Ans.



