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EDITORIAL NOTE

Advanced Studies in Pure Mathematics consists of monographs and
expository texts. It will cover important recent developments in
contemporary mathematics, as well as topics for which a satisfactory
systematic modern treatment is lacking. The editors hope that the
existence of this series will tempt potential authors to fill some of
the many gaps in the literature which are being felt by an increasing
number of workers in various mathematical fields. Advanced Studies
in Pure Mathematics will include books in English and French, and,
possibly, translations.

A. Grothendieck
N. H. Kuiper
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Preface

This book has its origin in lectures given at the Tata Institute of
Fundamental Research, Bombay in the winter of 1964/65. The aim
of the lectures was to present various topics in analysis, both on real
and on complex manifolds. It is unnecessary to add that the topics
actually chosen were determined entirely by personal taste. The
contents weré issued as lecture notes by the Tata Institute, and the
present book is based on these notes. '

The book is meant for people interested in analysis, who have
little analytical background. The elements of the theory of functions
of real variables (differential and integral calculus and measure theory)
and some complex variable theory are assumed. Elementary proper-
ties of functions of several complex variables which are used are,
in general, stated explicitly with references. It is however supposed
that the reader is well acquainted with linear and multilinear algebra
(properties of duals, tensor products, exterior products and so on of
vector spaces) as well as set topology (properties of connected and
locally compact spaces). (The material required is contained in
Bourbaki: Algébre Lineaire, Algébre Multilinéaire, and Topologie
Générale, Chap. 1 & 1I).

There are three chapters. The first deals with properties of differ-
entiable functions in R". The aim is to present, with complete proofs,
some theorems on differentiable functions which are often used in
differential topology (such as the implicit function theorem, Sard’s
theorem and Whitneys’ approximation theorem).

The second chapter is meant as an introduction to the study of
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real and complex manifolds. Apart from the usual definitions (differ-
- ential forms and vector fields) this chapter contains an exposition of
the theorem of Frobenius, the lemmata of Poincaré and Grothendieck
with applications of Grothendieck’s lemma to complex analysis, the
imbedding theorem of Whitney and Thom’s transversality theorem.

The last chapter deals with properties of linear elliptic differential
operators. Characterizations of linear differential operators, due to
Peetre and to Hormander_ are given. The inequalities of Garding
and of Friedrichs on elliptic operators are proved and are used to
prove the regularity of weak solutions of elliptic equations. The
chapter ends with the approximation theorem of Malgrange-Lax and
its application to the proof of the Runge theorem on open Riemann
surfaces due to Behnke and Stein.

We have not dealt with Riemannian metrics and elementary -
differential géometry. Nor have we dealt with elliptic complexes in
spite of their importance and interest. It is actually not very difficult
to extend the theorems, such as the finiteness theorem of Chap. 3,
to such complexes.

It remains for me to acknowledge the help I have received in pre-
paring this book. My thanks are due to Mrs. M. Narlikar who wrote
the notes issued by the Tata Institute; I am specially indebted to
H. G. Diamond who read, very carefully, a large part of these notes,
pointed out mistakes, and suggested improvements and different
proofs. Finally, I am grateful to N. H. Kuiper for his invitation to
rewrite the Tata Institute notes as a book, for his helpful remarks on
Chapters 1 and 2 and for his assistance in preparing the manuscript
for the printer.

Genéve, July 1968.
: Raghavan Narasimhan
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CHAPTER 1

Differentiable functions in R

Notation. We shall use the following notation.. We use R, C, Q, Z
to denote, respectively, the field of real numbers, the field of complex
numbers, the field of rational numbers and the ring of integers. We
shall look upon the first two as being provided with their usual
topology. R, C", ... will denote the Cartesian product of R, C, . : .,
respectively, so that, e.g.,

R* = {(x4,.. . x)lx,€Rj=1,...,n}.

The notations R*, Q*, Z* stand for the sets of non-negative elements
of R, Q, Z respectively.

For the most part, «, f stand for n-tuples of non-negative integers,
a=(ay,... %), B=(By, ... By), %, B;€ Z*. We then set

=g+ ... +ay, ol = oyl -~<at,

o a! 5
= — if S .
(ﬂ) Bl(x—B)! iy
Wewrite f < aif f; S ¢y and f< aif f < « and f #
We denote a point ofR" [CFIbyx = (55 o o2 ) fz = (B i 3Z0)
Then
x| = mjlx Ixl, 1zl = m?x |zl

lIxll = (x, 12+ . .. + %% llzll = (242 + . . . +1z)?
and
X o= X ool o 2 iec gl
. 1
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If X is a (Hausdorff) topological space and S a subset of X, we denote

by S the interior of S, i.e., the largest open set contained in S. If S,,
S, are two subsets of X, we write S; € S, if S, is relatively compact
in S,; i.e., if the closure of S, in S, is compact.

If f is a map of an open set £ in R" into R? and 4 a function = 0
in Q, we write

fx) = O(A(x)), ¢[or f= O(A)]
if there is a constant C > 0 such that | f(x)|] £ CA(x) for all xe Q.1In
additiqn, if a € Q, we write -
f(x) = o(A(x)),

asx —a(or |x — a| - 0),if there isamap &: Q2 - R* such thate(x) - 0
as x —» aand | f(x)| =< e(x)A(x). .
Sirnilar notation is used when a is replaced by a “point at infinity”.

§ 1.1 Taylor’s formula

Let Q be an opén set in R" and k an integer = 0. We denote by
C*(Q) the set of real-valued functions f on Q which possess continuous
partial derivatives of order <k, i.e., for which the derivatives

aapl_- > ee +a..f
ax‘;l S a"ﬁ;‘n
exist and are continuous on Q for|a| = o, + ... +a, < k. Wedenote

by C®(R2) the set of functions belonging to C"(Q) for all £ = 0.
Functions in C*(Q) are called C* functions on Q. For fe C¥®) and
|a] £ k, we denote the partial derivative

a¢|+ +¢,.f
x5! - - - Oxin
by

2o (éi_,)n . (0x f

The order in which the differentiations are performed is irrelevant.
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For any function f (not necessarily continuous) defined on 2, we
denote by supp(f) the closure in © of the set

{xe0l /() # 0}.

Supp() is called the support of f. t"“’&z) stands for the set of fe C*(Q)
such that supp(f) is compact.

If E is a finite-dimensional R vector space, we denote by CX(Q, E),
Ci(Q, E), ... the set of all mappings f: Q—E such that, for any
(continuous) linear functional / on E, the function /o fe C*Q);
CiQ),.. ..

If ey, ..., e is an R basis of E, and f: 2 — E is a map, for each
x € , there are real numbers f;(x), . . ., fo(x) such that

1) = 3 ey

It is easily checked that
feCXR,E), C(Q,E),...
if and only if °
£,€CHQ), Ci@),... for j=1,...,q
Elements of C¥(Q, E) are called C* mappings of Q into E. If E = R?

we write CXQ, q), C§(,q), ... for C¥Q, E), CX(Q, E), . . .. For
feCXQ, E), we can define the derivatives D*f for |«| < k. Then

D*feC* (@, E).

We shall identify fe Co(ﬂ) with the element g e C.,(R") which = f
onQand = 0 on R"—

We shall often deal w1th complex-valued functlons on 2 (or map-
pings of Qinto C?). We shall then use the notation C¥(Q), C¥(, q), . . .
for C*(, C), C¥(Q, C%), . . . if no confusion is likely.

A real-valued function f defined on Q is called (real) analytic if,
for any a=(a,, . . ., a,) € 2, there exists a power series

Pn(x) = 2 c,(x—a)f‘ = Zgocu soe a..(xl_al)u oo (xl.—al)“’
[ ajy
which converges to f(x) for x in a neighbourhood U of a. The series
then converges uniformly to f on compact subsets of U (so that f
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is continuoué) and so does the differentiated series. Hence feC®(R)
andforany B = (By, ..., B,),

D*f(x) = DPP,(x) = ¥ ¢, D*(x—a)".
Moreover, the series is uniquely determined by f; in fact
C, = A D* f(a).
a!

Analytic maps of L into a finite dimensional vector space are defined
in the same way as above.

If U, V are open sets in R" and f: U —» V is a homeomorphism
such that both f and f ~! are C* mappings, we say that f is a C* dif-
feomorphism (or just diffeomorphism) of U onto V. If U = V, we
call fa C* automorphism.

If fand f~! are real analytic, we speak of an analytic isomorphism
(or automorphism if U = V).

If U is an open set in C" and f a complex-valued function on U,
f is called holomorphic if for any ae U, there is a power series
Z c,(z—a)*, which converges to f(z) for all z in a neighbourhood of a.

If E is a finite dimensional C vector space, a map f: U— E is
called holomorphic if for any C linear function / on E, lof is holo-
morphic. A map f: Q — C? is holomorphic if and only if, when we
write f=(f}, . . ., fy), each f; is a holomorphic function.

A map f: U — V (open sets in C") is called a 'C analytic isomorphism
(or, by abuse of language, an analytic isomorphism if no confusion is
likely) if f and f~! are holomorphic. A theorem of Osgood (see e.g.
HEeRrVE [1963]), which we shall not prove in this book, asserts that a
one-one holomorphic map of U onto ¥ is a C analytic isomorphism.
There is no analogue for C* or real analytic maps.

We shall assume some elementary properties of holomorphic
functions. These are proved in most books on, several complex varia-
bles, see e.g. HERVE [1963], and HORMANDER [1966].

1.1.1 CAUCHY-RIEMANN EQUATIONS. A function defined on an open
set U = C" is holomorphic if and only if it is continuous and,<or any
j,1 £j <, the partial derivatives
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L, (if +i ,a—f)

2 \ox; oy,

exist and are 0. Here z; = x;+iy;, x;, y; arereal and i = ol
We also set

[}

o
oz

A A

For a holomorphic function f on U, we write

1= (&) ()

In view of the equations 1.1.1, we Have

F )u ( 9 )au
i (axl 0x, f.
A basic. theorem of Hartogs (see HORMANDER [1966]) asserts that

the condition of continuity is superfluous in the Cauchy-Riemann-
equations 1.1.1; we shall not prove this here.

1.1.2 PRINCIPLE OF ANALYTIC CONTINUATION. If f is holomorphic
(real analytic) in a connected open set U(2) in C* (R*) and D*f(a) = 0
forall « = («,,..., @,) and some ae U(R), then f = 0. In particular,
if f vanishes on a non-empty open subset of U(2), then f = 0.

1.1.3 'WEIERSTRASS’ THEOREM. If {f,} is a sequence of holomorphic
functions, converging uniformly on compact subsets of U to a func-
tion 7, then f is holomorphic in U. Moreover, for any a, {D‘f;} con-
verges to D°f, uniformly on compact sets.

1.1.3° MoNTEL’s THEOREM. If & = {f} is a family of holomorphic
functions in U which is uniformly bounded on compact subsets K
of U: :

If(x) M for all xek, fe®,

then any sequence of elements of & contains a subsequence which
converges uniformly on compact subsets of U.



6 » DIFFERENTIABLE FUNCTIONS. IN R” [1.1

1.1.3” THE MAXIMUM PRINCIPLE. Let f be holomorphic in a con-
nected open set U in C". Then, the map f: U — C s either constant or
open. In particular, if U is bounded and we set

M=swp lim |f2)],
{edU z—(, zeU

we have | f(z)] < M for all z € U unless f is constant.

1.1.4 CAUCHY’S INEQUALITIES. If f'is holomorphicin U and | f(z)| £ M

for z € U, then for any compact set K = U and any «, we have
|ID*f(z) £ M s~ forzeKk,

where d is the distance of K from the boundary of U.

1.1.5 LeMMA. Let f be real analytic in Q = R". We look upon

R” as a closed subset of C". Then there exists an open set Uc C",
U n R = Q and a holomorphic function F in U with F|Q = f.

PROOF. Let ae Q and let P,(x) = Y c,(x—a)* be a power series con- _

verging to f(x) for |[x—a| < r,, r, > 0. Define
U,={zeC||z—a| <r,}.

Then, for z € U,, P,(z) = ) c,(z—a)" converges and is a holomorphic
function on U,.

Let U = (J,eq U,. We assert that if U, n U, = U,, # 9, then
P, = Py in U, ;. In fact, U, , is convex, hence connected. Further, if
U, # 9, then U, , n R" # 9 and, for any c € U, , N R", we have

DPy(c) = DY(c) = DPy(c),

and we may apply principle 1.1.2. Hence we may define a holomorphic
function F on U by setting F|U, = P,. Clearly F|Q = f.

We return now to real valued functions. Let N be a neighbourhood
of the closed unit interval 0 < t<1 in R, and let fe CX(N), k = 1.
Then we have:

1.1.6 LeMMA. Thereis a £ with 0 < ¢ < 1 such that

|
i
1
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k=1 £(v) (k)
P A O GI

BT k!

where
v) d Y
o) = (—) f).
dt
Proor. For a continuous function g, on N, set
t
Io(g, 1) =g(1), 1I(g,1) =L I_1(g,s)ds, rzl

Clearly, if g € C*(V) and g™ (0) = Ofor 0 < v < k—1, we have

g(t) = L,G®, 1). -

If we apply this to
R =0~ 3.9,

we obtain

117 ) - kgf ':(0) 1™, 1) = L™, 1),

If m and M denote respectively the lower and upper bounds of /™
in [0, 1], we have, clearly,

m M
— (k) i
= 2 L(7T ,l)ék!.

Since f® is continuous, and so takes all values between m and M,
thereisa¢(,0< €1 for which

AUQD=$WWL

This proves the lemma.
It is easy to prove by induction that

fﬂx—#?m

k(g’ ) (k—l)'

Hence, (1.1.7) can be writtenin the form:



