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Preface

This volume grew out of the conference in honour of Hermann Weyl that
took place in Bielefeld in September 2006.

Weyl was born in 1885 in Elmshorn, a small town near Hamburg. He
studied mathematics in Go6ttingen and Munich, and obtained his doc-
torate in Gottingen under the supervision of Hilbert. After taking a
teaching post for a few years, he left Gottingen for Ziirich to accept
a Chair of Mathematics at the ETH Ziirich, where he was a colleague
of Einstein just at the time when Einstein was working out the details
of the theory of general relativity. Weyl left Ziirich in 1930 to become
Hilbert’s successor at Gottingen, moving to the new Institute for Ad-
vanced Study in Princeton, New Jersey after the Nazis took power in
1933. He remained there until his retirement in 1951. Together with his
wife, he spent the rest of his life in Princeton and Ziirich, where he died
in 1955.

The Collaborative Resarch Centre (SFB 701) Spectral Structures and
Topological Methods in Mathematics has manifold connections with the
areas of mathematics that were founded or influenced by Weyl’s work.
These areas include geometric foundations of manifolds and physics,
topological groups, Lie groups and representation theory, harmonic anal-
ysis and analytic number theory as well as foundations of mathematics.

In 1913, Weyl published Die Idee der Riemannschen Fliche (‘The
Concept of a Riemann Surface’), giving a unified treatment of Riemann
surfaces.

He described the development of relativity theory in his Raum, Zeit,
Materie (‘Space, Time, Matter’) from 1918, which reached a fourth edi-
tion in 1922. In 1918, he introduced the concept of gauge and gave the
first example of what is now known as a gauge theory.

From 1923 to 1938, Weyl developed the theory of compact groups
in terms of matrix representations and proved a fundamental character
formula for compact Lie groups. His book Classical Groups opened
new directions in invariant theory. It covered symmetric groups, general

vii



viii Preface

linear groups, orthogonal groups, and symplectic groups, and results on
their invariants and representations.

In The Continuum, Weyl developed the logic of classical analysis along
the lines of Brouwer’s intuitionism. However, he later decided that this
radical constructivism puts too much of a restriction on his mathematics
and reconciled himself with the more formalistic ideas of Hilbert.

Weyl also showed how to use exponential sums in diophantine approx-
imation, with his criterion for uniform distribution modulo one, which
was a fundamental contribution to analytic number theory.

During the conference, his lasting influence on current mathematics
became evident through a series of impressive talks often connecting
theorems of Weyl with the most current results in dynamical systems,
invariant theory, or partial differential equations. We are happy that so
many speakers agreed to contribute to this volume.

The conference was funded by the Collaborative Research Center
(SFB 701) ’Spectral structures and topological methods in mathematics’.
We gratefully acknowledge support by the German Research Foundation
(DFG). Thanks are also due to Philip Herrmann for editing this volume,
and to Markus Rost and Ulf Rehmann.

Bielefeld, December 2007
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1

Harmonic Analysis on Compact Symmetric
Spaces: the Legacy of Elie Cartan and
Hermann Weyl

Roe Goodman

Department of Mathematics
Rutgers, The State University of New Jersey

1 Introduction

In his lecture Relativity theory as a stimulus in mathematical research
[Wey4], Hermann Weyl says that “Frobenius and Issai Schur’s spadework
on finite and compact groups and Cartan’s early work on semi-simple
Lie groups and their representations had nothing to do with it [relativity
theory|. But for myself I can say that the wish to understand what really
is the mathematical substance behind the formal apparatus of relativity
theory led me to the study of representations and invariants of groups,
and my experience in this regard is probably not unique.”

Weyl’s first encounter with Lie groups and representation theory as
a tool to understand relativity theory occurred in connection with the
Helmholtz-Lie space problem and the problem of decomposing the tensor
product ®*C" under the mutually commuting actions of the general
linear group GL(n,C) (on each copy of C") and the symmetric group
S}, (in permuting the k copies of C").! He later described the tensor
decomposition problem in general terms [Wey3] as “an epistemological
principle basic for all theoretical science, that of projecting the actual
upon the background of the possible.” Mathematically, the issue was to
find subspaces of tensor space that are invariant and irreducible under
all transformations that commute with G;. This had already been done
by Frobenius and Schur around 1900, but apparently Weyl first became
aware of these results in the early 1920’s. The subspaces in question,
which are the ranges of minimal projections in the group algebra of &y,
are exactly the irreducible (polynomial) representations of GL(n, C), and
all irreducible representations arise this way for varying k by including
multiplication by integral powers of det(g) in the action. It seems clear

1 see [Haw, §11.2-3]



2 Roe Goodman

from his correspondence with Schur at this time that these results were
Weyl’s starting point for his later work in representation theory and
invariant theory.

Near the end of his monumental paper on representations of semisim-
ple Lie groups [Weyl, Kap. IV, §4], Weyl considers the problem of
constructing all the irreducible representations of a simply-connected
simple Lie group G such as SL(n,C). This had been done on a case-by-
case basis by Cartan [Carl|, starting with the defining representations
for the classical groups (or the adjoint representation for the exceptional
groups) and building up a general irreducible representation by forming
tensor products. By contrast, Weyl, following the example of Frobe-
nius for finite groups, says that “the correct starting point for build-
ing representations does not lie in the adjoint group, but rather in the
regular representation, which through its reduction yields in one blow
all irreducible representations.” He introduces the infinite-dimensional
space C(U) of all continuous functions on the compact real form U of G
(U = SU(n) when G = SL(n,C)) and the right translation representa-
tion of U on C'(U). He then obtains the irreducible representations of U
and their characters by using the eigenspaces of compact integral oper-
ators given by left convolution with positive-definite functions in C(U),
in analogy with the decomposition of tensor spaces for GL(n,C) using
elements of the group algebra of &;. The details are spelled out in the
famous Peter-Weyl paper [Pe-We|, which proves that the normalized
matrix entries of the irreducible unitary representations of U furnish an
orthonormal basis for L?(U), and that every continuous function on U
is a uniform limit of linear combinations of these matrix entries.

In the introduction to [Car2], E. Cartan says that his paper was in-
spired by the paper of Peter and Weyl, but he points out that for a
compact Lie group their use of integral equations “gives a transcendental
solution to a problem of an algebraic nature” (namely, the completeness
of the set of finite-dimensional irreducible representations of the group).
Cartan’s goal is “to give an algebraic solution to a problem of a tran-
scendental nature, more general than that treated by Weyl.” Namely,
to find an explicit decomposition of the space of all L? functions on
a homogeneous space into an orthogonal direct sum of group-invariant
irreducible subspaces.

Cartan’s paper [Car2| then stimulated Weyl [Wey?2] to treat the same
problem again and write “the systematic exposition by which I should
like to replace the two papers Peter-Weyl [Pe-We] and Cartan [Car2].”
In his characteristic style of finding the core of a problem through gen-
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eralization, Weyl takes the finite-dimensional irreducible subspaces of
functions (which he calls the harmonic sets by analogy with the case of
spherical harmonics) on the compact homogeneous space X as his start-
ing point.2 Using the invariant measure on the homogenous space, he
constructs integral operators that intertwine the representation of the
compact group U on C'(X) with the left regular representation on C(U).

In this paper we approach the Weyl-Cartan results by way of alge-
braic groups. The finite functions on a homogeneous space for a com-
pact connected Lie group (that is, the functions whose translates span
a finite-dimensional subspace) can be viewed as regular functions on the
complexified group (a complex reductive algebraic group). Irreducible
subspaces of functions under the action of the compact group correspond
to irreducible subspaces of regular functions on the complex reductive
group—this is Weyl’s unitarian trick. We describe the algebraic group
version of the Peter-Weyl decomposition and geometric criterion for
simple spectrum of a homogeneous space (due to E. Vinberg and B.
Kimelfeld). We present R. Richardson’s algebraic group version of the
Cartan embedding of a symmetric space, and the celebrated results of
Cartan and S. Helgason concerning finite-dimensional spherical repre-
sentations.

We then turn to more recent results of J.-L. Clerc [Cle] concerning
the complexified Iwasawa decomposition and zonal spherical functions
on a compact symmetric space, and S. Gindikin’s construction ([Ginl],
[Gin2], [Gin3]) of the horospherical Cauchy-Radon transform, which
shows that compact symmetric spaces have canonical dual objects that
are complex manifolds.

We make frequent citations to the extraordinary books of A. Borel
[Bor| and T. Hawkins [Haw|, which contain penetrating historical ac-
counts of the contributions of Weyl and Cartan. Borel’s book also de-
scribes the development of algebraic groups by C. Chevalley that is basic
to our approach. For a survey of other developments in harmonic analy-
sis on symmetric spaces from Cartan’s paper to the mid 1980’s see Hel-
gason [Hel3|. Thanks go to the referee for pointing out some notational
inconsistencies and making suggestions for improving the organization
of this paper.

2 Weyl's emphasis on function spaces, rather than the underlying homogeneous
space, is in the spirit of the recent development of quantum groups; his imme-
diate purpose was to make his theory sufficiently general to include also J. von
Neumann’s theory of almost-periodic functions on groups, in which the functions
determine a compactification of the underlying group.
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2 Algebraic Group Version of Peter—Weyl Theorem
2.1 Isotypic Decomposition of O[X]

The paper [Pe-We] of Peter and Weyl considers compact Lie groups U;
because the group is compact left convolution with a continuous func-
tion is a compact operator. Hence such an operator, if self-adjoint, has
finite-dimensional eigenspaces that are invariant under right translation
by elements of U. The finiteness of the invariant measure on U also
guarantees that every finite-dimensional representation of U carries a
U-invariant positive-definite inner product, and hence is completely re-
ducible (decomposes as the direct sum of irreducible representations).®

Turning from Weyl’s transcendental methods to the more algebraic
and geometric viewpoint preferred by Cartan, we recall that a subgroup
G C GL(n,C) is an algebraic group if it is the zero set of a collection
of polynomials in the matrix entries. The regular functions O[G] are
the restrictions to G of polynomials in matrix entries and det™. In
particular, G is a complex Lie group and the regular functions on G
are holomorphic. A finite-dimensional complex representation (m,V)
of G is rational if the matrix entries of the representation are regular
functions on G. The group G is reductive if every rational representation
is completely reducible.

Let g be a complex semisimple Lie algebra. From the work of Cartan,
Weyl, and Chevalley, one knows the following:

(1) There is a simply-connected complex linear algebraic group G with
Lie algebra g.

(2) The finite-dimensional representations of g correspond to rational
representations of G.

(3) There is a real form u of g and a simply-connected compact Lie
group U C G with Lie algebra u.

(4) The finite-dimensional unitary representations of U extend uniquely
to rational representations of G, and U-invariant subspaces cor-
respond to G-invariant subspaces.*

(5) The irreducible rational representations of G are parameterized by
the positive cone in a lattice of rank [ (Cartan’s theorem of the
highest weight).

3 This is the Hurwitz “trick” (Kunstgriff) that Weyl learned from I. Schur; see

Hawkins [Haw, §12.2].
4 This is Weyl’s unitary trick.

5 The first algebraic proofs of this that did not use case-by-case considerations were
found by Chevalley and Harish-Chandra in 1948; see [Bor, Ch. VII, §3.6-7].
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The highest weight construction is carried out as follows: Fix a Borel
subgroup B = HN™ of G (a maximal connected solvable subgroup).
Here H = (C*)!, with [ = rank(G), is a maximal algebraic torus in G,
and N7 is the unipotent radical of B associated with a set of positive
roots of H on g. Let B = HN~ be the opposite Borel subgroup. We can
always arrange the embedding G C GL(n,C) so that H consists of the
diagonal matrices in G, N* consists of the upper-triangular unipotent
matrices in G, and N~ consists of the lower-triangular unipotent matri-
ces in G. Let h be the Lie algebra of H and ® C h* the roots of h on
g. Write P(®) C h* for the weight lattice of H and P, C P(®) for the
dominant weights, relative to the system of positive roots determined by
N*. For A\ € P(®) we denote by h — h* the corresponding character of
H. It extends to a character of B by (hn)* = h* forh € Handn € N*.

An irreducible rational representation (m, E') of G is then determined
(up to equivalence) by its highest weight. The subspace EY " of Nt-
fixed vectors in E is one-dimensional, and H acts on it by a character
h — h* where A € P, .. The subspace EV ™ of N~ -fixed vectors in E is
also one-dimensional, and H acts on it by the character h — h~*" where
X = —wp - A\. Here wy is the element of the Weyl group of (g,h) that
interchanges positive and negative roots.

For each A € P, we fix a model (), F) for the irreducible rational
representation with highest weight A. Then (m., E}) is the contragre-
dient representation. Fix a highest weight vector ey € E) and a lowest
weight vector fy- € E}, normalized so that

(ex, far) = 1.

Here we are using (v,v*) to denote the tautological duality pairing be-
tween a vector space and its dual (in particular, this pairing is complex
linear in both arguments). For dealing with matrix entries as regular
functions on the complex algebraic group G this is more convenient than
using a U-invariant inner product on E) and identifying E} with E) via
a conjugate-linear map.

Let X be an irreducible affine algebraic G space. Denote the regular
functions on X by O[X]. There is a representation p of G on O[X]:

p(9)f(z) = f(g7'z) for f € O[X] and g €G.

Because the G-action is algebraic, Span{p(G)f} is a finite-dimensional
rational G-module for f € O[X]. There is a tautological G-intertwining
map

E, ® Homg (E), 0[X]) — O[X],
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given by v ® T'+— Tw. For A\ € P, let

OXIN'(\) ={f € O[X] : p(hn)f =h*f forhe Handne N*}.
(2.1)
The key point is that the choice of a highest weight vector ey gives an
isomorphism

Homg (E\, O[X]) = O[X]¥ " (N). (2.2)

Here a G-intertwining map T applied to the highest weight vector gives
the function ¢ = Tey € O[X]V (\), and conversely every such function
¢ defines a unique intertwining map T by this formula.® From (2.2)
we see that the highest weights of the G-irreducible subspaces of O[X]
comprise the set

Spec(X) ={r e P, : O[X]V"(\) #£0} (the G spectrum of X)

Using the isomorphism (2.2) and the reductivity of G, we obtain the
decomposition of O[X] under the action of G, as follows:

Theorem 2.1 The isotypic subspace of type (mx, Ey) in O[X] is the
linear span of the G-translates of O[X|¥"()\). Furthermore,

O[X] = @ Ey ® O[X]N"(\) (algebraic direct sum) (2.3)
A€ESpec(X)

as a G-module, with action m)(g) ® 1 on the A summand.

The action of G on O[X] is not only linear; it also preserves the
algebra structure. Since O[X]V¥ " (\)-O[X]¥" (1) € O[X]¥ " (A+p) under
pointwise multiplication and O[X] has no zero divisors (X is irreducible),
it follows from (2.3) that

Spec(X) is an additive subsemigroup of P, . .

The multiplicity of 7y in O[X] is dim O[X]"" (A\) (which may be infi-
nite). All of this was certainly known (perhaps in less precise form) by
Cartan and Weyl at the time [Pe-We|] appeared. We now consider Car-
tan’s goal in [Car2] to determine the decomposition (2.3) when G acts
transitively on X; especially, when X is a symmetric space. This requires
determining the spectrum and the multiplicities in this decomposition.

6 Weyl uses a similar construction in [Wey2|, defining intertwining maps by integra-
tion over a compact homogeneous space.
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2.2 Multiplicity Free Spaces

We say that an irreducible affine G-space X is multiplicity free if all the
irreducible representations of G that occur in O[X] have multiplicity
one. Thanks to the theorem of the highest weight, this property can
be translated into a geometric statement (see [Vi-Ki]). For a subgroup
K C Gand z € X write K, = {k € L : k-z = z} for the isotropy
group at .

Theorem 2.2 (Vinberg—Kimelfeld) Suppose there is a point zp € X
such that B - xq is open in X. Then X is multiplicity free. In this case,
if X € Spec(X) then h* =1 for all h € H,, .

Proof If B -z is open in X, then it is Zariski dense in X (since X is
irreducible). Hence f € O[X]V" ()) is determined by f(z), since on the
dense set B - xg it satisfies f(b-z9) = b~* f(x¢). In particular, if f # 0
then f(z¢) # 0, and hence h* =1 for all h € H,,. Thus

dimO[XV" (A\) <1 forall A€ P, .
Now apply Theorem 2.1. O

Remark. The converse to Theorem 2.2 is true; this depends on some
results of Rosenlicht [Ros| and is the starting point for the classification
of multiplicity free spaces (see [Be-Ral).

Ezample: Algebraic Peter—Weyl Decomposition

Theorem 2.2 implies the algebraic version of the Peter-Weyl decompo-
sition of the regular representation of G. Consider the reductive group
G x G acting on X = G by left and right translations. Denote this
representation by p:

p(y,2)f(x) = f(y~'zz), for feO[G] and z,y,z € G.

Take H x H as the Cartan subgroup and B x B as the Borel subgroup
of G x G. Let zp = I (the identity in G). The orbit of zy under the
Borel subgroup is

(BxB)-zg =N HN* (Gauss decomposition) (2.4)

This orbit is open in G since g = n~ + § + n*. Hence G is multiplicity
free as a G x G space. The G x G highest weights (relative to this choice
of Borel subgroup) are pairs (wou, A), with A\, u € P,,. The diagonal



