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To all who enjoy mathematical puzzles,
and to our loved ones,

who tolerate our enjoyment of them.



Preface for the Student

This book aims to be both enjoyable and demanding. We present
interesting problems and develop the basic undergraduate mathematics
needed to solve them. Below we list 36 such problems. We solve most of
these in this book, while at the same time developing enough theory to
prepare you for upper-division math courses.

This course will differ from other math courses you have taken,
because it emphasizes writing and language skills. We do not ask that
you memorize formulas, but rather that you learn to express yourself
clearly and accurately. You will learn to solve mathematical puzzles as
well as to write proofs of theorems from elementary algebra, discrete
mathematics, and calculus. This will broaden your knowledge and im-
prove the clarity of your thinking.

How can you improve your writing? Good writing requires prac-
tice. Rereading and revising solutions can improve your presentation.
You must say what you mean and mean what you say. Mathematics
offers a tremendous opportunity for this, because clear decisions can be
made about whether sentences contain faulty reasoning. Mathematics
uses formulas to express complicated thoughts, and you will learn how
to combine well chosen notation with clear explanation in sentences.
This will enable you to communicate ideas concisely and accurately.

We invite you to consider some intriguing problems. Solutions to
most appear in the text, and we include the others as exercises.

1. Given several piles of pennies, we create a new collection by remov-
ing one coin from each old pile to make one new pile. Each original pile
shrinks by one; 1,1,2,5 becomes 1,4,4, for example. Which lists of sizes
(order is unimportant) are unchanged under this operation?

2. Which natural numbers are sums of consecutive smaller natural
numbers? For example, 30 =9+ 10+ 11 and 31 = 15+ 16, but 32 has no
such representation.

3. Including squares of all sizes (one-by-one through eight-by-eight), an
ordinary eight-by-eight checkerboard has 204 squares. How many
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be Preface for the Student

squares of all sizes arise using an n-by-n checkerboard? How many tri-
angles of all sizes arise using a triangular grid with sides of length n?
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4. At a party with five married couples, no person shakes hands with
his or her spouse. Of the nine people other than the host, no two shake
hands with the same number of people. With how many people does the
hostess shake hands?

5. Is it possible to fill the large region below with non-overlapping
copies of the small L-shape? Rotations and translations are allowed.

n

2 2n

6. We can tell whether two collections of weights have the same total
weight by placing them on a balance scale. How many known weights
are needed to balance each integer weight from 1 to 121? How should
these weights be chosen? (Known weights can be placed on either side
or omitted.)

7. If each resident of New York City has 100 coins in a jar, is it possible
that no two residents have the same number of coins of each type (pen-
nies, nickels, dimes, quarters, half-dollars)?

8. How can we find the greatest common divisor of two large numbers
without factoring them?

9. Why are there infinitely many prime numbers? Why are there arbi-
trarily long stretches of consecutive non-prime positive integers?

10. Consider a dart board having two regions, one worth a points and
the other worth b points, where a and b are positive integers having no
common factors. What is the largest point total that cannot be obtained
by throwing darts at the board?
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11. A math professor cashes a check for x dollars and y cents, but the
teller inadvertently pays y dollars and x cents. After the professor buys
a newspaper for & cents, the remaining money is twice as much as the
original value of the check. If k=50, what was the value of the check?
If £ = 75, why is this situation impossible?

12. Must there be a Friday the 13th in every year?

13. When two digits in the base 10 representation of an integer are
interchanged, the difference between the old number and the new num-
ber is divisible by nine. Why?

14. A positive integer is palindromic if reversing the digits of its base
10 representation doesn’t change the number. Why is every palindromic
integer with an even number of digits divisible by 11?7 What happens in
other bases?

15. How can one describe all the integer solutions to 42x + 63y = z, or to
x%+y% =222

16. Suppose L is a prime number. For which positive integers K can
we express the rational number K/L as the sum of the reciprocals of
two positive integers?

17. Are there more rational numbers than integers? Are there more
real numbers than rational numbers? What does “more” mean for infi-
nite sets?

18. Can player A have a higher batting average than player B in day
games and in night games but a lower batting average than player B
over all games?

Player | Day Night Overall

A .333 .250 .286
B .300 .200 .290

19. Suppose A and B gamble as follows: On each play, each player
shows 1 or 2 fingers, and one pays the other x dollars, where x is the
total number of fingers showing. If x is odd, then A pays B; if x is even,
then B pays A. Who has the advantage, and how can that player
exploit it?

20. Given a positive integer %k, how can we obtain a formula for the sum
#4254 oei b n®?

21. Suppose candidates A and B in an election receive a and b votes,
respectively. If the votes are counted in a random order, what is the
probability that candidate A never trails?
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22. Can the numbers 0, ..., 100 be written in some order so that no 11
positions contain numbers that successively increase or successively
decrease? (An increasing or decreasing set need not occupy consecutive
positions or use consecutive numbers.)

23. Suppose each dot in an n by n grid of dots is colored black or white.
How large must n be to guarantee the existence of a rectangle whose
corners have the same color?

24. How many positive integers less than 1,000,000 have no common
factors with 1,000,000?

25. Suppose n students take an exam, and the exam papers are handed
back at random for peer grading. What is the probability that no stu-
dent gets his or her own paper back? What happens to this probability
as n goes to infinity?

26. A computer plotter is to draw a figure on a page. How can one
determine the minimum number of times the pen must be lifted while
drawing the figure?

27. Suppose there are n girls and n boys at a party, and each girl likes
some of the boys. Under what conditions is it possible to pair the girls
with boys so that each girl is paired with a boy that she likes?

28. Suppose n points lie on a circle. How many regions are created by
drawing all chords joining these points, assuming that no three chords
have a common intersection?

29. A Platonic solid has congruent regular polygons as faces and has
the same number of faces meeting at each vertex. Why are the tetrahe-
dron, cube, octahedron, dodecahedron, and icosahedron the only ones?

30. Suppose n spaces are available for parking along the side of a
street. We can fill the spaces using Rabbits, which take one space,
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and/or Cadillacs, which take two spaces. In how many ways can we fill
the spaces? In other words, how many lists of 1’s and 2’s sum to n?

31. Repeatedly pushing the “x2” button on a calculator generates a se-
quence tending to 0 if the initial positive value is less than 1 and tend-
ing to oo if it is greater than 1. What happens with other quadratic
functions?

32. What numbers have more than one decimal representation?

33. Suppose that the points in a tennis game are independent and that
the server wins each point with probability p. What is the probability
that the server wins the game?

34. How is lim, , (1 + x/n)" relevant to compound interest?

35. One type of baseball player hits singles with probability p and oth-
erwise strikes out. Another type hits home runs with probability p/4
and otherwise strikes out. Assume that a single advances each runner
by two bases. Compare a team composed of the home-run hitters with a
team composed of the singles hitters. Which team generates more runs
per inning?

36. Suppose two jewel thieves steal a circular necklace with 2m gold
beads and 2rn silver beads arranged in some unknown order. Why is it
that, for any arrangement of the beads, there is a way to cut the neck-
lace along some diameter so that each thief gets half the beads of each
color? Why is it that a heated circular wire always contains two diamet-
rically opposite points where the temperature is the same? How are
these questions related?




Preface for the Instructor

This book arose from discussions about the undergraduate mathe-
matics curriculum. We asked several questions. Why do students find
it difficult to write proofs? What is the role of discrete mathematics?
How can the curriculum better integrate diverse topics? Perhaps most
important, why don’t students enjoy and appreciate mathematics as
much as we might hope?

Upper-division courses in mathematics expose serious gaps in the
preparation of students; the difficulties are particularly evident in ele-
mentary real analysis courses. Such courses present two obstacles to
students. First, the concepts of elementary analysis are subtle; it took
mathematicians centuries to understand limits. Second, proofs require
both attention to exposition and a different intellectual attitude from
computation. The combination of the two difficulties has defeated many
students. Basic courses in linear or abstract algebra evince similar dif-
ficulties and can be overly formal. Due to their specialized focus, upper-
class courses often fail to address adequately the need for careful expo-
sition. If students first learn techniques of proof and habits of careful
exposition, then they will better appreciate more advanced mathematics
when they encounter it.

The excitement of mathematics springs from engaging problems.
Students have natural mathematical curiosity about problems such as
those listed in the Preface for the Student. They then care about the
techniques used to solve them; hence we use these problems as a focus
of development. We hope that students and instructors will enjoy this
approach as much as we have.

A course introducing techniques of proof should not specialize in
one area of mathematics; later courses offer ample opportunities for spe-
cialization. This book considers diverse problems and demonstrates
relationships among several areas of mathematics. One of the authors
studies complex analysis in several variables, the other studies discrete
mathematics. We explored the interactions between discrete and con-
tinuous mathematics to create a course on problem-solving and proofs.

Xiv
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Content

We present elementary aspects of algebra and number theory,
combinatorics, and analysis. We develop such diverse topics as prime
factorization, modular arithmetic, Pythagorean triples, techniques of
counting, basic graph theory, recurrence relations, sequences and series,
the basic theorems of calculus, continuous nowhere differentiable func-
tions, and the fundamental theorem of algebra. We integrate these top-
ics into a coherent whole, choosing material that illustrates techniques
of proof and interactions among the topics.

Part I (Elementary Concepts) begins by deriving the quadratic for-
mula and using it to motivate the axioms for the real numbers, which
we agree to assume. We discuss sets, logical statements, and functions,
paying careful attention to the use of language. The highlight of Part I
is the application of induction to several engaging problems.

Part II (Properties of Numbers) studies the number systems N, Z,
and Q. We explore g-ary expansions, cardinality, binomial coefficients,
the Euclidean algorithm, and prime factorization. Equivalence rela-
tions provide the foundation for our development of modular arithmetic
and the rational numbers. Features include the Schroeder-Bernstein
Theorem, Fermat’s Little Theorem, the Chinese Remainder Theorem,
criteria for irrationality, Pythagorean triples, Simpson’s Paradox, and a
bit of probability.

Part III (Discrete Mathematics) explores combinatorial argu-
ments. We consider elementary enumeration, the pigeonhole principle,
the inclusion-exclusion principle, graphs, and recurrence relations.
Highlights include Bertrand’s Ballot Problem (Catalan numbers), more
on probability, the Euler totient function, Hall’s Theorem on systems of
distinct representatives, Platonic solids, and the Fibonacci numbers.
Combinatorial problems lead us to recurrence relations and sequences.
We develop various techniques to solve recurrences. Familiarity with
sequences facilitates the transition to continuous mathematics.

Part IV (Continuous Mathematics) begins with the Least Upper
Bound Property for the real numbers. We prove the Bolzano-Weier-
strass Theorem and use it to prove that Cauchy sequences converge.
We then develop the theory of calculus: sequences, series, continuity,
differentiation, uniform convergence, and the Riemann integral. We
define the natural logarithm via integration and the exponential func-
tion via infinite series, and we prove their inverse relationship. We
define trigonometric functions via infinite series, using results on inter-
change of limiting operations to verify their properties. We include
Cantor’s proof that R is uncountable, convexity, and van der Waarden’s
example of a continuous and nowhere differentiable function. We omit
many applications covered adequately in calculus courses, such as Tay-
lor polynomials, analytic geometry, Kepler’s laws, polar coordinates, and
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many of the physical interpretations of derivatives and integrals. We
close by developing the properties of complex numbers and proving the
Fundamental Theorem of Algebra.

In Appendix A we develop the properties of arithmetic and con-
struct the real number system using Cauchy sequences. There we begin
with IN and subsequently construct Z, @Q, and [R. We include a portion
of the construction of Q in Chapter 8 in order to illustrate the funda-
mental role of equivalence relations.

Pedagogy

Certain pedagogical issues require careful attention. In order to
benefit from this course, students must have a sense of intellectual
progress. An axiomatic treatment of the real numbers seems painfully
slow and frustrates students. They have learned algebraic computa-
tional techniques throughout their schooling, and we want to build on
this foundation. This dictates our starting point. In Chapter 1 we list
the axioms for the real numbers and their elementary algebraic conse-
quences, and we accept them for computation and reasoning. We defer
the construction of the real numbers and verification of the field axioms
to Appendix A, for later appreciation. We generally do not assign the
exercises in Chapter 1 that request verification of algebraic properties
from the axioms.

Chapters 2 and 3 discuss elementary aspects of quantifiers, math-
ematical language, and functions. This material provides the language
for all subsequent discussion. Formal discussion of mathematical lan-
guage is problematic; students master techniques of proofs through
examples of usage, not via memorization of terminology from formal
logic. Thus we do not stress the formal manipulation of logical symbols.
After the discussion in Chapter 2 that emphasizes the use of logic,
familiarity with logical concepts is conveyed by repeated usage through-
out the book. Chapter 2 can be treated lightly in class; students can
refer to it when they need help with manipulating logical statements.

The collection of exercises is a strong feature of this book. Many
are fun, some are routine, and some are difficult. Exercises designated
by “(=)” or “(+)” are routine or difficult, respectively; those designated by
“(1)” are especially interesting or instructive. Having used these desig-
nations, we order the exercises for each chapter roughly in parallel to
the presentation of material in the text, rather than in order of diffi-
culty. Most exercises emphasize thinking and writing rather than com-
putation. The understanding and communication of mathematics
through problem-solving should be the driving force of the course.

The Preface to the Student lists many engaging problems. Some
of these begin chapters as motivating “Problems”; others are left to the
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exercises. Solutions of such problems in the text are designated as
“Solutions”. Items designated as “Examples” are generally easier than
those designated as “Solutions” or “Applications”. “Examples” serve pri-
marily to illustrate concepts, whereas “Solutions” or “Applications”
employ the concepts being developed and involve additional reasoning.
Items designated as “Remarks” contain important commentary for
which the designations of “Definition” and “Lemma” are not appropri-
ate; students should not ignore the “Remarks”. Many of the exercises in
the text carry hints; these represent what we feel will be helpful to most
students. We also provide an appendix with more elementary hints for
many problems; these are meant to help students get started.

This book does not assume calculus and hence in principle can be
used in a course taught to freshmen or to high school students. It does
require motivation and commitment from the students, since problems
can no longer be solved by plugging numbers into a template. The book
should be appropriate for students who have studied calculus computa-
tionally and wonder why the computations work. It is ideal for begin-
ning majors in mathematics and computer science. Readers outside
mathematics who enjoy careful thinking and are curious about mathe-
matics will also profit by it. High school teachers of mathematics may
appreciate the interaction between problem-solving and theory.

Design of Courses

We developed this book through numerous courses, beginning with
a version we team-taught in 1991 at the University of Illinois. Various
one-semester courses can be constructed from this material. A one-
semester course on discrete mathematics that emphasizes proofs will
cover Parts I-III, omitting most of Chapter 8 (rational numbers) and the
more algebraic material from Chapters 6 and 7. A one-semester course
in elementary analysis covers Chapters 4 and 5, part of Chapter 8, and
Part IV. The full text is suitable for a one-year course culminating in
the Fundamental Theorem of Algebra. Using Part I and a selection of
material from Parts II-IV, we have taught one-semester courses intro-
ducing students to proofs and to a balanced overview of mathematics.

The book offers considerable flexibility in the design of a balanced
course. We cover almost all of Chapters 1-6, including the Schroeder-
Bernstein Theorem. In Chapter 7, we skip the section on groups. From
Chapter 8, the construction of rational numbers and the existence of
irrational numbers are indispensable, but the proof of the former can be
treated lightly. The material on Pythagorean triples and on probability
in Chapters 8 and 9 enriches the course if time permits. In Chapter 9,
the material up to the Summation Identity (and the ballot problem)
should be covered to illuminate combinatorial reasoning. Although
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optional, the treatment of multinomial coefficients helps unify the
course. In Chapter 10, the pigeonhole principle illustrates the elegance
of concise arguments; inclusion-exclusion via the totient function fur-
ther enhances cohesiveness. Chapter 11 contains enough material for
the instructor to sample according to taste and time. In Chapter 12,
most instructors will want to discuss first-order and second-order recur-
rences and perhaps the Catalan recurrence. Chapters 13 through 15
should be covered thoroughly. Coverage in Chapter 16 depends on the
instructor’s interests and the students’ abilities; reaching the Mean
Value Theorem probably requires skipping Chapter 11. The rest can be
left as supplemental reading for the interested student. The one-
semester balanced course will not reach Chapters 17 and 18.
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