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PREFACE

Since the time of its development in the mid-1970s,
digital subtraction angiography (DSA) has evolved
into a widely used clinical imaging technique. De-
spite this rapid growth, we feel that a detailed de-
scription of the scientific principles underlying this
method has been unavailable. The intent of this book
is to provide such a work. This text is directed princi-
pally toward clinical radiologists who will be working
with DSA on a routine basis. We hope, however, that
the content and style are well suited to other groups as
well, particularly research radiologists, medical
physicists and engineers, radiology residents, grad-
uate students, and advanced x-ray technologists.

The principal goal of this work is fo provide an
understanding of the basic instrumentation and phys-
ical concepts of DSA. In addition, we have included a
set of clinical images indicating some of the present
applications of DSA in intravenous and intraarterial
studies. Several topics of DSA research, such as tem-
poral filtering, also are presented. It is hoped that the
information in this book will enable the practicing
radiologist to use DSA more effectively and effi-
ciently, with DSA equipment appropriate fo these
needs.

In preparing this book we have attempted to
maintain a quantitative style, but with as little math-
ematics as possible. We hope this approach is suited
to those who are allergic to equations while still being
satisfactorily concise to those with more rigorous
mathematical backgrounds. Whenever possible we
have illustrated concepts with experimental DSA
phantom or clinical examples. We also wish to stress
that since neither of us has a medical degree, we are
in no way attempting to teach medicine. We show
clinical results either as practical illustrations of tech-
nical principles, or simply as indications of present
DSA capabilities that we have observed in many DSA
studies.

The structure of the book is as follows: after an
historical overview of DSA development in chapter 1,
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Preface

chapters 2 to 6 cover the basic principles and in-
strumentation underlying digital fluorographic imag-
ing, including the imaging chain, video signals, and
digital processing. Chapters 7 and 8 present the phys-
ical concepts and the actual implementation of DSA.
Chapter 9 is a discussion of temporal filtering. Finally,
chapter 10 is a collection of clinical results, gathered
from a number of sources, illustrating present appli-
cations. Two newer DSA techniques, hybrid subtrac-
tion and fomographic DSA, are also discussed briefly
at the end of chapter 10.

We strongly recommend that all 10 chapters be
read in order. For readers, however, who may wish to
concentrate immediately on clinical applicability, we
suggest reading chapters 1,7, 8,and 10 sequentially.
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Introduction to Digital
Fluorography

HISTORICAL OVERVIEW

The history of diagnostic x-ray imaging has been
linked closely with fluoroscopic methods. The very
discovery of x-rays by Roentgen in 1895 was made
using a fluorescent screen. Since Roentgen'’s time, the
application of fluorescent materials to x-ray detection
has undergone major changes, so that several dozen
commercial manufacturers now offer modern digital
fluorographic imaging equipment.

The evolution of fluoroscopic imaging equip-
ment is shown in figure 1.1. The first systems to be
used clinically resembled figure 1.1A. A fluorescent
screen was placed behind the patient being studied.
Of the x-rays striking the screen, less than 15% were
absorbed, and of these only 30% were converted into
visible light. Adim light image resulted and could be
viewed directly by a radiologist, but only in a dark-
ened room after a period of dark adaptation. The
main limitation to this system was the poor efficiency
of the screen in converting x-rays into visible light.

A direct way of increasing the image brightness
was fo increase the x-ray exposure rate to the patient.
High x-ray exposure was, in fact, a necessary side ef-
fect of these early systems. Even so, light levels were
still low, and an increase in brightness by a factor of
100 or more was still desired.

In some landmark research performed in the
1940s independently by Langmuir (1940), Coltman
(1948), Morgan and Sturm (1951), and others, the
x-ray image intensifier evolved, resulting in the sys-
tem shown schematically in figure 1.1B. In this case,
x-rays were absorbed and converted to visible light as
infigure 1.1A; however, this light then was converted
to electrons that were accelerated within the image
intensifier (Il) tube before striking the output phos-
phor, where the high energy electrons were recon-
verted to visible light and viewed. Because of the
large increase in electron energy and because of the
minified image, the final image was about 500 times
brighter than the image produced by the fluorescent
screen alone.

Although the Il represented a tremendous ad-
vance, the approach described in figure 1.1B still had
some inconveniences: an image could be observed
only during the exposure itself, and unless a mirror
system was used it was awkward for more than one
observer to view the image. The next step was to
couple the output of the Il to a television camera, as
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shown in figure 1.1C. This combination was achieved
in the late 1950s and early 1960s, when lIs of even
higher brightness amplification were developed.
There have been numerous refinements in Il technol-
ogy since then; perhaps the most important im-
provement was the development in the late 1960s of
cesium iodide (Csl) as the input phosphor. Use of Csl
increased the quantum detection efficiency to 50% to
60%. It is with the basic framework shown in figure
1.1C that investigators in the mid-1970s began ap-
plying digital technology to fluoroscopic imaging.

MOTIVATION FOR SUBTRACTION

FIGURE 1.1.

The evolution of fluoroscopic
x-ray imaging. A, The earliest
fluoroscopic imaging systems.
Radiation continuously struck
the fluorescent screen and was
converted to visible light, but
with an overall efficiency only
of about 5%. Because of very
low light levels, the radiologist
was forced to observe the
screen in a darkened room and
only after minutes of dark
adaptation. B, The image in-
tensifier converted x-rays into
electrons, which were acceler-
ated within the intensifier and
in turn converted into visible
light at the output phosphor.
The output was substantially
brighter than the fluorescent
screen case (A) and could be
viewed via lenses and mirrors.
C, The next step in system de-
velopment coupled the output
of the image intensifier in (B)
to a video camera. The resultant
electronic image could be
viewed remotely on a television
monitor.

Because of the superimposition of a variety of
anatomic structures (bone, soft tissue, fat, blood, air
cavities, efc.) in a radiographic image, the detection
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and delineation of a particular structure within an
image is potentially a difficult perceptual problem. A
number of methods have been used to reduce the
complexity of the radiographic image without de-
grading the appearance of structures of interest. Such
techniques include “optimizing” the kVp in order fo
maximize radiographic sensitivity to a particular
substance, choosing a projection to obtain a best view
of a structure of interest, or choosing an x-ray film that
emphasizes low contrast detail.

The ideal image to analyze would be one in
which all regions not containing a desired structure,
X, had a background level of “zero,” while those cor-
responding to X ideally would have a signal substan-
tially different from zero. The goal of subtraction is fo
provide a result as close to this ideal as possible.

In general, this is done by acquiring two (or
more) images of the anatomy suspected of containing
X. ldeally, the contrast (or signal) caused by X changes
from the first image to the second, while the contrast
from all non-X structures remains the same. Upon
subtraction, all non-X structures are canceled, thereby
isolating X, as desired. This situation occurs during
angiography, in which case X corresponds to iodin-
ated blood flowing through the arteries being
studied. The iodinated blood creates a change in
radiographic image contrast from one film to the next
as the contrast bolus (iodine) passes through.

The concept of subtracting one image from
another to highlight the differences between them is
not new. Early radiographic image subtraction was
performed by Ziedses des Plantes (1934, 1962). Since
that time and well before the advent of digital
fluorography, film subtraction has been performed
routinely in neuroangiographic studies.

Although the subtraction concept has been
exploited in imaging for along time, not until the de-
velopment of digital subtraction angiography (DSA)
has subtraction accuracy been sufficient toisolate less
than 1% image contrast within complex images. In
addition, the flexibility of DSA equipment has made
a wide variety of subtraction techniques available
that until now might have been hopelessly complex
to implement.

The subtraction concept can be carried further. A
subtraction image, at least one regarded in a very
generalized fashion, need not be the result of merely
subtracting one image from another. Instead, subtrac-
tion can be the result of combining or processing a



