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MESO-SCALE SHEAR PHYSICS IN EARTHQUAKE AND LANDSLIDE MECHANICS



Preface

This book brings together a collection of invited articles on meso-scale mechanics, as a means
to develop an understanding of the underlying physics dominating shear at material interfaces
and within particulate systems during conditions of rapid shearing. This edited volume emanated
from the “Batsheva Seminar on Shear Physics at the Meso-scale in Earthquake and Landslide
Mechanics™, sponsored by the Batsheva de Rothschild fund of the Israel Academy of Sciences and
Humanities and co-sponsored jointly by the US Air Force Research Laboratory and the Ben-Gurion
University of the Negev.

Identification of meso-scale phenomena occurring between microscopic and continuum length
scales has been one of the most exciting developments in the last decades in understanding shear
between material interfaces and in particulate systems, and is considered as the bridge between the
two length scales for studying material response. At the meso-scale complexities arise due to the
presence of structural elements like surface roughness, grains, internal boundaries between them,
physical phenomena occurring at surfaces, formation of sub-grain elements during loading, the
presence of fluids, interaction between different materials, and their combined effect on the response
of the system. This research area has broad applications in Geosciences and Geoengineering. For
example, the initiation of seismic slip along fault planes at great depths at rates nearing shock
conditions and the initiation of deep seated landslides near the earth’s surface. Additionally, the basic
physics of thermo-poro-mechanical coupling can be elucidated through a meso-scale mechanics
approach as a means of understanding the loss of shearing resistance when water and heat are
trapped inside almost impervious shear layers under great pressures. In the case of seismic slip,
tremendous amount of material slips at very high velocities (several meters per second) on ultra
localized shear zones. Shear heating and fluid pressurization can be associated to phenomena such
as phase transition and mineral decomposition and thus play a key role in the understanding of the
energetics of earthquakes. In the case of deep seated landslides, thermo-poro-mechanical processes
within localized shear zones control their triggering, their sliding velocity and consequently their
runout.

The 21, peer-reviewed articles are grouped into five chapters that address theoretical, compu-
tational and experimental aspects of meso-scale mechanics of material interfaces and particulate
systems as follows: 1) Dynamics of frictional slip, 2) Fault gauge mechanics, 3) Experimental fault
zone mechanics, 4) Granular shear and liquefaction, and 5) Dynamics of landslides.

We wish to express our deep gratitude to Dr. Yossi Segal, Secretary of Natural Sciences, Israel
Academy of Sciences; Dr. Major Wynn S. Sanders, Chief of Materials and Nanotechnology, Euro-
pean Office of Aerospace Research and Development—USAF, Professor Rivka Carmi (M.D.),
President, Ben-Gurion University of the Negev, Professor Jimmy Weinblatt, Rector, BGU, and
Professor Amir Sagi. Dean, Faculty of Natural Sciences, BGU, for their financial support. Finally,
we also wish to thank Dr. Conrad Felice of Washington State University for co chairing the Batsheva
seminar and for his resourceful assistance throughout the production of the seminar.

Yossef H. Hatzor
Jean Sulem

loannis Vardoulakis
Editors
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Thermo- and hydro-mechanical processes along faults during rapid slip

James R. Rice

Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences,
Harvard University - SEAS, Cambridge, MA, USA

Eric M. Dunham
Department of Geophysics, Stanford University, Stanford, CA, USA

Hiroyuki Noda
Division of Geological and Planetary Sciences,
California Institute of Technology, Pasadena, CA, USA

ABSTRACT: Field observations of maturely slipped faults show a generally broad zone of
damage by cracking and granulation. Nevertheless, large shear deformation, and therefore heat
generation, in individual earthquakes takes place with extreme localization to a zone <1-5 mm
wide within a finely granulated fault core. Relevant fault weakening processes during large crustal
events are therefore likely to be thermal. Further, given the porosity of the damage zones, it seems
reasonable to assume groundwater presence. It is suggested that the two primary dynamic weak-
ening mechanisms during seismic slip, both of which are expected to be active in at least the early
phases of nearly all crustal events, are then as follows: (1) Flash heating at highly stressed frictional
micro-contacts, and (2) Thermal pressurization of fault-zone pore fluid. Both have characteristics
which promote extreme localization of shear. Macroscopic fault melting will occur only in cases for
which those processes, or others which may sometimes become active at large enough slip (e.g.,
thermal decomposition, silica gelation), have not sufficiently reduced heat generation and thus
limited temperature rise. Spontaneous dynamic rupture modeling, using procedures that embody
mechanisms (1) and (2), shows how faults can be statically strong yet dynamically weak, and oper-
ate under low overall driving stress, in a manner that generates negligible heat and meets major
seismic constraints on slip, stress drop, and self-healing rupture mode.

1 INTRODUCTION

There has been a surge of activity in recent years towards increased physical realism in description
of the earthquake process. That includes insightful geological characterization of the fine structure
of fault zones, new laboratory experiments that reveal response properties in rapid or large slip,
and new theoretical concepts for modeling dynamic rupture. The purpose here is to review some
of those new perspectives and their impact on how we think about earthquake rupture dynamics.

1.1 Fault zone structure, friction and a quandary in seismology

Field observations of maturely slipped faults show a generally broad zone of damage by cracking and
granulation (Chester etal., 1993), but nevertheless suggest that shear in individual earthquakes takes
place with extreme localization to a long-persistent slip zone, <1-5 mm wide, within or directly
bordering a finely granulated, ultracataclastic fault core (Chester and Chester, 1998; Chester et al.,
2003, 2004; Heermance et al., 2003; Wibberley and Shimamoto, 2003).

On the other hand, the shear strength along a fault may be represented by

T =fo where o =o0,—ps (1)

Here f is the friction coefficient, o is the effective normal stress, o, is the total normal stress
clamping the fault shut, and py is the pore pressure along it. It is well known that lab estimates of f
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4  James R. Rice, et al.

for rocks (under sliding rates of, say, wm/s to mm/s) are usually high, / ~ 0.60-0.85 (e.g., Byerlee
(1978)).

Given that fault slip zones seem to be so extremely thin, one must conclude that if those /" prevail
during seismic slip, with p, that is much closer to hydrostatic than lithostatic, we should find the
following: (a) measurable heat outflow near major faults, and (b) evidence of extensive melting
along exhumed faults. However, neither effect (a) or (b) is generally found.

1.2 Weak faults, vs. statically strong faults that dvnamically weaken

There are two general lines of explanation that have been explored to resolve this quandary. One
line of explanation simply postulates that major faults are weak. That could be because fault core
materials are simply different from most rocks and have very low f, e.g., like documented for some
clays and talc. Alternatively, it could be because /" is not necessarily low, but pore pressure py is
high and nearly lithostatic over much of the fault, especially down-dip where o, is large.

It is not the purpose here to argue against such weak-fault lines of explanation, but rather to
explore an alternative which we are led to by recent observations. That is that major faults are
statically strong but dynamically weaken during seismic slip. Owing to the extreme thinness of'slip
zones, the relevant fault weakening processes during large crustal events are likely to be thermal
and, given the damage zones and geologic evidence of water-rock interactions within them, it
seems reasonable to assume fluid presence. Of the various dynamic weakening processes thus far
identified, it has been argued that two should be singled out as being essentially universal, in that
they are expected to be active and important from the start of seismic slip in crustal events (Rice,
2006; Rice and Cocco, 2007). These are as follows:

1. Flash heating and hence shear weakening of frictional micro-asperity contacts, a process which
reduces f in rapid slip, and

2. Thermal pressurization of pore fluid, which reduces the effective stress; py increases, because
the highly granulated fault gouge is of low permeability and the thermal expansion coefficient
of water is much greater than that of the rock particles.

Other thermal weakening processes may set in at large enough slip or large enough rise in
temperature 7, along the fault. These include the following:

3. Thermal decomposition at large rise in 77 in lithologies such as carbonates, thus liberating a
fluid product phase at high pore pressure,

4. Formation of a gel-like layer at large slip in wet silica-rich fault zones, or some related process
relying on the presence of silica and water, and

5. The ultimate thermal weakening mechanism, formation of a macroscopic melt layer along the
fault at large enough slip and rise of Ty, if the above set has not limited the actual increase of
Ty to levels lower that that for such bulk melting.

While we focus on processes (1) and (2), it is very important to understand (3), (4), and (5)
and others not yet identified. Still, in a sense the latter are secondary, because one expects that
some significant earthquake slip, and fault weakening, will already have occurred before they
can become activated. Preliminary estimates (Rempel and Rice, 2006) of when (5) would set-
in suggest that with hydrostatic p, and representative material parameter ranges, (1) and (2) are
sufficiently effective at shallow fault depths that slip in significant earthquakes could often be
accommodated without an onset of macroscopic melting, but that deeper in a fault zone, where
the initial o, — py (which scales the rate of heat input), and the initial 7, are higher, melt onset
should occur during increasing slip of typical surface-breaking earthquakes. For quantification of
the slips and parameter ranges involved, see Rempel and Rice (2006).

Flash heating, weakening process (1), is a mechanism that has been advanced to explain high
speed frictional weakening in metals (Bowden and Thomas, 1954; Archard, 1958/59; Ettles, 1986;
Lim and Ashby, 1987; Lim et al., 1989; Molinari et al., 1999). It is only relatively recently that
it has been considered as a process active during earthquake slip (Rice, 1999, 2006; Beeler and
Tullis, 2003; Beeler et al., 2008; Tullis and Goldsby, 2003a,b; Hirose and Shimamoto, 2005;
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Noda et al., 2006; Noda, 2008). Because of the relatively low thermal conductivity of most rocks,
and the relatively high shear stresses which they support at frictional micro-contacts, they are in
fact susceptible to weakening by flash heating starting at sliding rates as low as 0.1 to 0.3 m/s,
which is well less than the average slip rate of ~1 m/s (Heaton, 1991) inferred from seismic
inversions for large earthquakes. Thermal pressurization, process (2), has independent roots in
the literature on large landslides (Habib, 1967, 1975; Anderson, 1980; Voigt and Faust, 1982;
Vardoulakis, 2002; Veveakis et al., 2007; Goren and Aharonov, 2009) and that on earthquakes
(Sibson, 1973; Lachenbruch, 1980; Mase and Smith, 1985, 1987; Lee and Delaney, 1987; Andrews,
2002; Wibberley, 2002; Noda and Shimamoto, 2005; Sulem et al., 2005; Rice, 2006; Rempel and
Rice, 2006; Ghabezloo and Sulem, 2008; Noda et al., 2009).

Process (3), thermal decomposition with generation of a high-pressure fluid phase (O’Hara et al.,
2006; Han et al., 2007; Sulem and Famin, 2009) is, of course, a type of thermal pressurization.
In considering process (2), the fluid phase is presumed to pre-exist in pore spaces within the fault
gouge so that the pressurization begins as soon as slip and consequent frictional heating begin,
whereas in (3) the fluid phase comes into existence only once enough slip, frictional heating, and
temperature rise have accumulated to initiate the decomposition. Process (4) is based on findings
from experiments at large but sub-seismic (in results reported thus far) slip that, in presence of water,
frictional weakening at large slip is greatest for rocks of greatest silica content (Goldsby and Tullis,
2002; Di Toro et al., 2004; Roig Silva et al., 2004). The weakening is argued to be due to formation
of an initially weak silica-gel layer through reaction of water with fine silica particles from fresh
comminution along the shear zone. There are many studies of process (5), macroscopic melting
in fault zones, of which the long-lived signature is noncrystalline pseudotachylyte veins along the
fault surface and in side-wall injections. Recent contributions include Spray (1995), Tsutsumi and
Shimamoto (1997), Fialko and Khazan (2004), Hirose and Shimamoto (2005), Sirono et al. (2006),
and Nielsen et al. (2008).

2 DYNAMIC RUPTURE FORMULATION

2.1 Elastodynamic methodology

Noda et al. (2006, 2009) and Dunham et al. (2008) have begun to integrate weakening by flash
heating and thermal pressurization into elastodynamic numerical methodology for spontaneous
rupture development. The problems thus far addressed are of rupture along a planar fault zone
within an effectively unbounded and homogeneous solid. For those, the implementation of an
elastodynamic boundary integral equation (BIE), with a spectral basis set for the slip and stress
distributions (Perrin et al., 1995; Geubelle and Rice, 1995) is extremely efficient and accurate.
Results have been obtained for 2D anti-plane or in-plane strain. In the formulation, with the x axis
passing along the fault plane, the shear stress 7 (x, f) along the fault and the slip 8 (x, 7) are related by

T(x,1) = 10(x, 1) — (1/2c)V(x,1) + P (x, 1) (2)

where V (x,1) = 08 (x, 1)/t is slip rate, ju is the shear modulus, ¢ is the shear wave speed, and the
functional ¢ (x, ) is given as a linear space-time convolution of an elastodynamic kernel, dependent
onx —x" and r — ¢/, with the slip §(x’, ¢') for all x’, /' within the wave cone with vertex at x, t. Here
79(x, 1) is some specified loading stress on the fault; it is the stress that would have been induced
by the applied loadings if the fault had been constrained against any slip. We prescribe 7 (x, 7) as a
uniform background stress t? for all time, plus some localized overstress applied at/ = 0 to nucleate
rupture. §(x, t) and ¢ (x, f) are expanded in a Fourier basis set, so the convolution is expressed by

t

N2
‘;‘fg’,’)]= 3 ’g"((:))]exp(inl:'.r) with @, (1) = / Calt — YDu(tyd! (3)
- n=nNp2 "
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Here N is a large even integer, the C,(7) are known real functions (Perrin et al., 1995; Geubelle
and Rice, 1995), k = 27 /X where the periodic repeat length X of the truncated Fourier series is
chosen large enough that waves from the periodic replications of the rupture event do not arrive to
neighboring replications in the time of interest, and the D_, (¢) are complex conjugates of the D, ()
with Do and Dy 2 being real. Eq. (3) is equivalent to a real Fourier cosine and sine series truncated
at N terms (with no sine term when n» = N/2). Through FFT procedures, the histories D, () are
determined by §(x,7) at N sample points, equally spaced by Ax = X /N, i.e., by the histories
S(Ax — X /2,t) forj=0,1,2,... , N— 1, and conversely. That greatly speeds calculations. The
®, (1) and ¢ (jAx — X /2, 1) are similarly related.

2.2 Friction law with weakening by flash heating and thermal pressurization

The simple flash heating model reviewed here (Rice, 1999, 2006; Beeler and Tullis, 2003; Beeler
etal., 2008) was intended to approximately determine the expression for f of eq. (1) for conditions of
sustained sliding at some speed V. The f/ so derived must be regarded as a steady state value, written
here as f, and is regarded as a function of slip rate, f;; = f(V), although it is also a function of the
spatially averaged (over patches of fault area large enough to include many contacts) temperature
Ty of the fault plane, which evolves with ongoing slip and time. In the model (Rice, 20006) it is
assumed that contact temperature 7. = 7 when a contact pair first forms, but then as the contact
slides during its brief lifetime (which is D/V for a contact asperity of diameter D; see Fig. 1), T,
rises substantially above 7y. The rise is due to the intense localized heat generation at the contact,
at rate .V, where .. is the contact shear strength (typically of order 0.1 times shear modulus p at
low T,; see discussion in Rice (2006)). 7. is assumed to have negligible variation as 7, increases,
but then to abruptly decrease to a much lower weakened value 7,, when 7, reaches a “weakening”
temperature 7,,. Within the model, based on 1D heat conduction at the sliding contact like in
Archard (1958/59), the slip rate such that an asperity of diameter D would begin to weaken only
just as it is slid out of existence is then (Rice, 1999, 2006)

Vi = (mam/D)(pe(Ty — Tr)/Te)? 4)

Here pc is volumetric specific heat and «;;, = K/ pc is thermal diffusivity (K is thermal conduc-
tivity). Estimates based on rock properties and assumed D of order 10 pm, as well as comparison
to experimental results of Tullis and Goldsby (2003a, b) and Beeler et al. (2008) (by rotary shear
of a rock annulus in an Instron frame), suggest that V,, is of order 0.1 to 0.3 m/s for rocks such
as quartzite, feldspar, granite and gabbro when 7y = room temperature. V), is expected to be
less at higher 7. Thus the model takes contacts to be strong for all their lifetime at low slip rates,
V < V., butto be strong for only a fraction of their lifetimes at high slip rates, V' > V,,, that fraction
being V,,/ V.

Neglecting the actual statistical distribution of contact diameters, and taking D as a representative
value, these concepts lead to the steady-state friction coefficient

o
l macro-stresses V = slip rate

i contact
vis b,asperity diameter shear stress
/12— T,
<+ V2 O Vot
contact-stresses ~ 0-1 1 % ssperity temmp
c AL s
(,T T = asperity temperature L N >

Tf T,,, weakening temperature

Tf= average temperature of fault surfaces

Figure 1. Simple representation of asperity contacts and their strength loss for flash heating model.
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FO= fut o= foVufV V2 Vo

(5)

where f is the low-speed friction coefficient and f,, = fy7,, /7. is the value to which it would reduce
if all contacts were in the weakened state. Note that despite the notation f(¥), the dependence
mentioned on ambient fault temperature enters from the dependence of V), on Ty, eq. (4). Rough
estimates from the Tullis and Goldsby (2003a, b) experiments, which covered a limited velocity
range, up to slightly less than V' = 0.4 m/s, are that fo =~ 0.64 and f,, =~ 0.12 for quartzite, fy ~
0.82 and f;, ~ 0.13 for granite, and /) ~ 0.88 and f,, =~ 0.15 for gabbro. However, the f,, involve
significant extrapolation and, in experiments of Yuan and Prakash (2008) on quartzite from the
same source and annular configuration, but in a Kolsky bar dynamic torsion apparatus, /* was only
very slightly below 0.20 at slip rates as high as 2-4 m/s. Eq. (5) and the small ¥V, ~ 0.1 m/s for
quartzite, suggest that /* should nearly coincide with f,, at such rates, thus that f,, =~ 0.18-0.20.

In fact, we cannot simply assume /" to be a decreasing function of ¥ in eq. (1) because that makes
the problem of sliding between elastic continua ill-posed (there is a short wavelength divergence in
response to small initial perturbations from steady sliding). The problem is remedied (Rice et al.,
2001) mathematically when we look to experiments and embed the description of variations of /
in rate and state friction concepts. Thus, with a “slip” version of state evolution, /" is assumed to
be given by the form (Rice, 1983)

df vV
d_adv Ve oy ©)

dt — Vdt L

where a is the direct effect coefficient in rate and state modeling (a =~ 0.01 at room T for quartzite
and granite, and it scales in approximate proportion to absolute 7'), and L is a slip distance adequate
to renew the asperity contact population, typically taken as 5-20 pm in our studies, as guided by
observed state evolution slip distances in rate and state friction experiments. The smallness of
L makes the simulations extremely challenging in terms of present-day computers and, as of the
writing, the longest rupture lengths simulated are ~30 m (Dunham et al., 2008; Noda et al., 2009).

In the numerical simulations (Noda et al., 2009; Dunham et al., 2008) we replace the constant
term fo in eq. (5) with fzp (V), which is the weak logarithmic function of ¥ describing slow-rate

0.7 - :
fo(V.Ty) = £ (V)
0.6 O, =126 MPa
V.o =0.170 m/s T, =210 °C
0.5 ) .
T ./.\,\ (V7l))
— 04 /

_xPBefS 0 202475

Ise p —
(T PUBC _av 2¢, )/O’U

0.1} vruse Z 1 487 m/s

0 L
0 1 2 3 4 5
V (m/s)

Figure 2. From Noda, Dunham, and Rice (2009), their figure 1. Plot of fis based on Tullis and Goldsby
(2003a, b) parameters for granite, adjusted to conditions at mid-seismogenic depth, ~7 km, for crustal strike
slip earthquakes. Plot is based on assumed ambient effective normal stress 3y = 126 MPa and temperature
Ty = 210°C; as slip develops, heating increases 7y over Ty, and pore fluid pressurization will reduce &
from . The Zheng and Rice (1998) stress level rPulse, important to understanding whether rupture takes the
self-healing pulse or classical shear crack mode, is also shown.
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friction at steady-state. That is, fzy (V) = fo — (b — a) In(V /V}) in the standard notation, where
b — a =~ 0.002-0.004 for rate-weakening frictional surfaces in granite. Here ¥ can be chosen
arbitrarily in that low-speed regime (say, as 1 jum/s) with corresponding adjustment of f; to cor-
respond to the correct fy at that rate. Fig. 2, taken from Noda et al. (2009), plots the resulting f;,
using parameters which are thought to be representative for granite, at conditions corresponding
to a mid-seismogenic zone depth for crustal strike-slip earthquakes. Also, while irrelevant in our
simulations, for some purposes the a/V term in eq. (6) should be regularized near ¥ = 0 in a
manner consistent with the thermal activation basis for the direct effect (Rice et al., 2001).

2.3 Inclusion of thermal pressurization of pore fluid in friction formulation

In order to close our system of governing equations which, so far, consists of egs. (1), (2), (3)
and (6), it is necessary to relate the histories of py and 7y to that of slip and stressing along the
fault. That is because py directly enters eq. (1) and 7y is a parameter on which f (V) depends (see
egs. (5) and (4)). The new ingredients which close the system are the equations of conservation of
energy, with inclusion of conductive heat transfer, and of conservation of fluid mass with inclusion
of Darcy fluid seepage and poro-thermo-elastic considerations. These amount to a pair of coupled
PDE:s for the fields of pore pressure p and temperature 7' near and on the fault. The values of p and
T thus determined at the fault surface itself are the respective py and Ty that we seek.

In writing the conservation laws we neglect certain apparently minor terms (e.g., advective heat
transfer by moving fluid), and recognize that the gradients of pore pressure p and temperature 7'
very near the fault are generally very much larger in the direction perpendicular to the fault (the z
direction) than in the x or y directions which are parallel to it (such may sometimes not be a valid
assumption immediately at the moving rupture tip). Thus (e.g., Rice (2006)) we have

aT 9 ( ar)+ ayP! arid ﬂ(ap AaT +3n”[ 9 P ap) o
c— = — | pcayp— T—— — —A— = — | Pap,—
P T 3z \P%%; ot ar " ar at oz \""%;

Here y”' is the inelastic fault-parallel shear strain rate and #”/ is the inelastic dilatancy rate (n itself
is the volume of pore space per unit aggregate volume of porous material, that aggregate volume
being measure in some reference state before the deformation episode considered). Also, pc is the
specific heat per unit volume, oy, = K/ pc is the thermal diffusivity, and K is thermal conductivity;
B is a porous medium storage coefficient under the particular mechanical constraints near a fault
zone (see Rice (2006)), ap, = k/Bny is the hydraulic diffusivity, & is permeability, and 7 is viscos-
ity of the pore fluid; and A is a parameter representing dp/dT due to heating under undrained, elas-
tically reversible conditions. Rice (2006) and Rempel and Rice (2006) compile estimates of these
various parameters at mid-seismogenic depths in the crust, based principally on data of Wibberley
(2002) and Wibberley and Shimamoto (2003) for gouge of the Median Tectonic Line Fault (Japan)
under a range of confining stresses, and on tabulated thermophysical data for water and minerals.

Rempel and Rice (2006) also compare fully non-linear solutions of eqs. (7) to the linearized
versions

aT 2T T ay! ap ar 1 an! 8%p
S e — e d =—A—t= = oy —o 8
ar - Moz T e o 3t ot T B ar T Mz ®)

(with coefficients pc, oy, B and apy, considered constant) for cases with a priori specified histories
of dy”! /ot and 3nP! /31, e.g., representing earthquake slip at a specified constant rate in time, with
the aim of estimating (using eq. (1) but assuming a constant low /* as motivated by flash heating) the
relation between stress T and slip § during seismic rupture. They find that the procedure adopted
by Rice (2006), of iteratively choosing the constant values of coefficients in the linearized PDEs of
eqgs. (8), as certain path averages in p, T'space of those same coefficients, when regarded as known
functions of p, T, along the p, T path predicted by egs. (8), gives a tolerable match to results for t
versus § based the full non-linear solutions to eqgs. (7). In our spontaneous elastodynamic analyses
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presented here we have used egs. (8), without that iterative choice of coefficients, but rather with
coefficients based on the ambient p, T at the mid-seismogenic depth (~7 km) considered.

The conceptually (but not computationally) simplest case for egs. (7) or (8) is that of slip
on a mathematical plane. In that case 3y”’ /at = V(x,1)dpir(z), where V is the local slip rate and
Spir(2) is the Dirac function. However, actual shear zones, when highly localized to a prominent slip
surface, can nevertheless distribute deformation over regions that may extend over a few 10s to a few
100s of wm. Because the difference between such small but finite thicknesses and zero thickness is
sometimes not negligible on the seismic time scale in our modeling, a Gaussian distribution of shear
heating 18y”! /91, like in Andrews (2002), over azone of nominal thickness 2w is assumed. We write

P— o 9
‘ 2w? ©)

ot V2w

which reduces to rayp’/at = 1(x,t)V(x,t)dpir(z) asw — 0.

In the numerical studies (Noda et al., 2008; Dunham et al., 2008) of spontaneous rupture based on
this formulation (which have thus far taken #”! = 0), explicit finite difference (in z and ¢) versions
of egs. (8) are solved at each elastodynamic gridpoint location x; = —X/2 + jX /N along the
rupture, ultimately to give, with help of the other governing equations, 7y (x;,#) and py (x;,t). For
what we think to be appropriate ranges c;, ~1 mm?/s and ap ~ 1-10 mm?/s (Rice, 2006; Rempel
& Rice, 2006), it turns out that when the elastodynamic time steps At are already short enough
to resolve the state evolution of eq. (6) with L ~ 5-20 um, explicit finite difference solution of
eqs. (8) requires significantly shorter time steps, to meet the requirement is that diffusion grid
spacing be sufficiently small that the error associated with the spatial discretization of the diffusion
equations is comparable the error in the elastodynamic system. Thus Noda et al. (2008) devised
a procedure based on a quadratic interpolant of ¢ (x, ) within an elastodynamic time step Af,
to achieve second-order accuracy. The interpolant is constructed from ¢ (x,7 — Af), ¢(x,1), and
¢ (x, 1+ At) for use between ¢ and # + At, so that the condition of eq. (2), T = 19 — (1t /2¢5)V + ¢,
along with eq. (1), eq. (6) with eqgs. (4) and (5) (with fp replaced by f11(V)), and egs. (8) are
satisfied, to numerical accuracy, within each of the smaller time steps for diffusion. This is highly
accurate but very demanding computationally because of the small but presumably realistic L ~
5-20 wm and realistic diffusivities, ~1-10 mm?/s, that we use.

3)/”1 t(x,H)V(x,1) ( 22 )
exp

2.4 Theoretical background on strong rate-weakening and self-healing slip pulses

The adopted friction description involves strong rate-weakening (see Fig. 2). To provide background
for understanding when strong rate-weakening will lead to rupture in the mode of a self-healing
slip pulse, versus a classical enlarging shear crack, we digress here to review results from Zheng

¢ O (constant)
T Tb
o
— e
<— S —

o
3 [ o RN
’ - / o(v,v.r)=slip, V=00(x.v.0)/ar
T =1, (V) = steady-state strength ‘
' I / \ Faut  /f 2

Instantaneous change. V] to V,
y Ste < ange. v, 2 T B L]
% . V[ VL= - ]
Toutee __—Evolutuon towards steady ( / /
e state over ship of order L \ T(x,v.1) = shear stress T, in slip direction/
N P | Rt s — e
Slope”™ | J S, b
- o 4 7 c1: ; T
=pi2ee, W W Slip rate. V 4

Figure 3. Friction with strong rate dependence. It is assumed here, to simplify, that the steady-state friction
fss(V) is a function of slip rate Vonly, and that the effective normal stress @ is constant; then the steady-state
shear stress 74 (V) = fis(V)a. (Modified from Rice (2001).)
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and Rice (1998), in part following a recapitulation in Rice (2001), discussed with reference to
Fig. 3. Some representative results from Dunham et al. (2008) and Noda et al. (2009), based on the
formulation in the earlier parts of this Section 2, are presented in Section 3 to follow.

Studies by Cochard and Madariaga (1994, 1996), Perrin et al. (1995), and Beeler and Tullis
(1996) had shown that strong rate-weakening could lead to rupture in the self-healing mode. The
objective in Zheng and Rice (1998) was then to establish guidelines for when this type of rupture
mode would in fact result. To simplify enough that sharp results could be established, it was assumed
in that development that the steady state shear strength 7, (V) was a function only of slip rate V,
which could, e.g., result if & is constant and f;; (V) is a function only of V. Then, t (V) = f (V)T .
However 7. (V') does not give the expression for t for variable V', because t = f& and f evolves
according to eq. (6). Thus the response to a sudden change in V' is as depicted on the left in Fig. 3,
a response which also assures well-posedness in problems of frictional sliding between elastic
continua (Rice et al., 2001).

Now consider a fault surface which we treat as the boundary z = 0 between two identical half
spaces (Fig. 3, at right). An initial shear stress 7o(x,y) = r(f, a constant level too small to cause
failure, acts everywhere on S (the entire x, y plane) except in small nucleation region Sy,,c] which
will be overstressed to start the rupture. The stress level t,yise (the same as what Noda et al. (2009)
denoted TP in their diagram shown here in Fig. 2) is marked in Fig. 3. tpyse is defined as the
largest value that ré’ could have and still satisfy ré’ — 1V /2¢s < to(V) forall V > 0.

Suppose that ré’ < Tpulse- As Will now be seen, that effectively precludes the possibility that
rupture could occur on S, in the form of an indefinitely expanding shear crack. Note that

té’ < Tpulse implies that 74 (V) — (r(’,’ —uV/)2¢cs) >0 forall V > 0. (10)

Use is made of an elastodynamic conservation theorem (Zheng and Rice, 1998)
/ f [TCe,p, 1) — to(x,y) + uV(x,y,1)/2¢] dxdy = 0 (1)
Sx

which holds throughout the rupture; 7o (x, y) is the stress field at # = 0 when rupture is nucleated.

Assume that, with ré’ < Tpulse> Tupture has been locally nucleated and grows on S in the form
of an indefinitely expanding shear crack. Such an assumption can be shown, as follows, to lead to a
definite contradiction in the case of mode I1I (anti-plane) slip, and to seemingly implausible result
in general, meaning that we must reject the assumption that an indefinitely expanding crack-like
rupture is possible when ré’ < Tpulse- TO see why, note that the integrand in eq. (11) everywhere
along the rupturing surface Syt () where T ~ 74 (V), except for Sy,c1 and for small regions at the
rupture front affected by the rate/state regularization (so that t may depart significantly from z (V)
in those regions; they are small because L is in the range of a few to a few tens of microns; see
discussions in Zheng and Rice (1998) and Noda et al. (2009) for further quantification), is equal to

T (V) — 18 + 1V 2¢s = 1o (V) — (i — uV /2¢5) > 0 (12)
where the inequality follows from eq. (10). Thus, denoting by Sout(7) (=Soc — Srupt (7)) the region

of S~ lying outside the rupture at time 7, and noting that /' = 0 there, we must by eq. (11) then
have, for any sufficiently large rupture,

AFou(t) = // [Ty, 1) — r(’,’]dxd_\' <0 (and AFou (1) — —00 as Syype(t) — o0) (13)
Sout (1)

where AFyu(7) is the change in total shear force (positive in the direction of initial shear stress-
ing) supported outside the ruptured zone. Inequality (13), however seems implausible: We expect
ruptures to result in an increase AF,,(#) in the net force carried outside themselves, or at least to



