JINSIDE 8\ &

ﬂom Saulpaugh - Charles Mirho



Inside the JavaOS™
Operating System

Tom Saulpaugh
Charles Mirho

A
A\ A4

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts * Harlow, England ¢ Menlo Park, California
Berkeley, California * Don Mills, Ontario * Sydney
Bonn ¢ Amsterdam * Tokyo ¢ Mexico City




Many of the designations used by the manufacturers and sellers to distinguish their
products are claimed as trademarks. When those designations appear in this book and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Corporate, Government, and Special Sales Group
Addison Wesley Longman, Inc.

One Jacob Way

Reading, Massachusetts 01867

Library of Congress Cataloging-in-publication Data
Saulpaugh, Tom
Inside the JavaOS™ Operating System, Tom Saulpaugh,
Charles Mirho.
p. cm.
Includes index.
ISBN 0-201-18393-5
1. JavaOS™ operating system. 2. Operating systems (Computers) 3. Java
(Computer programming language) I. Mirho, Charles A. II. Title.
QA76.76.063S3563 1999
005.4°469--dc21 98-51423
CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada

ISBN 0-201-18393-5
Text printed on recycled and acid-free paper.

123456789 10-MA- 03 0201 00 99
First Printing, January 1999



Inside the JavaOS™
Operating System



Preface

I ve been hooked on operating systems ever since I took my first OS course at
Cal Poly, San Luis Obispo. I was lucky enough to land a job right after graduat-
ing, in 1982, working on operating systems for Digital Research Inc. (DRI) in
Monterey, California.

In June of 1985, I joined Apple’s MacOS group. Apple enjoyed tremendous
growth from 1985 to 1990. Each new release of the OS added more functionality
(QuickDraw in color, 32-bit addressing, SCSI bus support) for more and more fla-
vors of Macintosh. The pace of addition was staggering, so much so that Apple
never had time to recode the low-level OS and fix some of its shortcomings.

By 1990, these shortcomings, including no preemptive multitasking and no
memory protection for applications, began to affect the quality of the product. The
Mac was the easiest computer to use but also one of the most fragile. Mac users
quickly learned the location of the reboot button on the back of the box.

In June of 1990, I had lunch with Bill Bruffey of the MacOS group. Bill is a
great engineer who designed the Mac’s innovative file system—the Hierarchical
File System (HFS). Bill had grown tired of waiting for Taligent to produce a new
MacOS and he had received permission to build a new microkernel, called
NuKernel, tuned for the Macintosh operating system.

He envisioned a microkernel that ran Mac applications in a virtual machine
and supported a new modern concurrent input/output (I/O) system. Bill hired me
as employee number one on a project that was eventually known as Copland.

Fred Brooks could easily write a modern version of The Mythical Man-Month
about the Copland project. Copland started lean and mean, with Bill hiring just
four more engineers during that first year. After just a few months of work, we five
demonstrated to management a microkernel-based MacOS running on a MaclI-ci.
The project gained steam over the next few years and eventually grew to more
than 500 employees, and Bill and I became two contributing engineers with no
management authority.

Somewhere during the middle of the Copland project, management asked me
to back-port some Copland I/O technology to a new family of Macintosh comput-
ers sporting the PCI expansion bus. I took a year off from the Copland project and
helped Apple ship a PowerPC-native device driver architecture for its new PCI-
based Macs.

xi



xii

PRERFACE

The PCI team was focused and lean. A small team of engineers built and
deployed a large amount of software in a year’s time with none of the bureaucratic
overhead of the Copland project. My time working on PCI for System 7.5 proved
to be the most enjoyable year of my Apple career.

When I returned to the Copland project in June of 1995, I found a mess. The
Copland leadership had decided to recode the toolbox and break popular existing
system extensions such as After Dark. Apple had gambled that users and develop-
ers wouldn’t mind a new OS that wasn’t a hundred percent backward compatible!
I made up my mind that summer to leave Apple.

In May of 1995, Sun Microsystems introduced Java at SunWorld. As the Java
phenomenon materialized over the next six months, Jim Mitchell and Peter Madany
of Sun’s JavaSoft began to build a new OS (code-named Kona) to run only Java
software.

I was hired in March of 1996 to design an I/O architecture for Kona, soon to
be renamed JavaOS™. The early Kona team consisted of seven people. The team
was extremely focused and produced the first official release of the JavaOS oper-
ating system in just 15 months. After my experience with the Copland project, 1
felt lucky and honored to be working with bright, focused people on an innovative
operating system.

In early 1997, JavaSoft handed over control of JavaOS to SunSoft. Late that
year, the SunSoft JavaOS team, headed by Bob Rodriguez, began working closely
with an IBM team to build the next release of JavaOS, eventually renamed JavaOS
for Business"™. The contributions from IBM were significant and included many
key architectural features.

This book provides an inside look at the results of Sun’s and IBM’s efforts to
build a new thin-client operating system. The book uses the name JavaOS through-
out, but the version of the JavaOS operating system presented here is JavaOS for
Business.

Tom Saulpaugh

Senior Staff Engineer
Sun Microsystems, Inc.

When I first learned about the JavaOS operating system, I was a second-year, part-
time law student at Santa Clara University, with a full-time job writing patents
during the day. The last thing I needed was another distraction in my life. But I
have always been fascinated by operating systems, which I consider the most
intricate and complex software programs on the planet. A new operating system
based around, and written in, the Java programming language was intriguing.
Think of the possibilities: system services loaded on demand and distributed exe-
cution between client and server, or even on multiple clients and multiple servers!
A single OS code base, regardless of client or server hardware architecture, residing



PREFACE

in a central location. An end to complicated software upgrades—simply subscribe
to your operating system and applications, and the latest upgrades and bug fixes
magically appear each time you boot up. These are some of the possibilities
opened up by JavaOS technology.

When I first met Tom Saulpaugh, he was an Apple Computer refugee who had
just recently joined JavaSoft. The JavaOS team was only about ten people, and
there was a sense that the rest of JavaSoft didn’t see the potential of this new tech-
nology. Someone needed to get the word out. Tom, myself, and a hard-driving Sun
technical writer, Tom Clements, set out to do just that. First came an article in
BYTE magazine, a bit of undisguised evangelism. Next a meeting with James
Gosling, at which we pitched the merits of JavaOS with regards to the Java lan-
guage itself. Things started to happen.

A Sun product group took responsibility for the JavaOS operating system
from JavaSoft, Chorus was purchased for their microkernel technology, IBM
signed on to co-develop and market JavaOS, and the team grew. I'm certainly not
going to take credit for making JavaOS a success; I was mostly an outsider look-
ing in, but I like to think my early enthusiasm had some impact on getting folks to
stand up and take notice. It is safe to say that the time for a book on JavaOS has
arrived.

Inside the JavaOS™ Operating System is about using Java technology to make
an operating system simpler, more reliable, more powerful, and easier to maintain.
In this spirit of simplicity and power, we have tried to create a book that explains
the workings of JavaOS in simple, concise terms. This was not always easy,
because operating systems are by their nature obscure and complex beasts. I hope
you enjoy reading about JavaOS as much as we enjoyed writing about it.

Charles Mirho

xiii



Acknowledgments

This book was two years in the making. It was written as the software was
developed and has changed many times. Along the way, the following people have
contributed to its content: Jeff Schmidt, Anne Bluntschli, Tom Clements, Bill
Kain, and Bruce Montague.

Among the tremendous engineering talent from Sun who worked on this
operating system are: Rajeev Bharadhwaj, Bob Rodriguez, Ron Karim, Dennis
Aaron, Mohamed Abdelaziz, Angela Byrum, Jagane Sundar, Rich Berlin, Nedim
Fresko, Mike Shoemaker, Dean Long, Graham Hamilton, Lisa Stark-Berryman,
Greg Slaughter, Bill Keenan, Jason Li, Tom Mason, Tim Sia, Don Hudson, Ed
Goei, Bernard Traversat, Sam Yan, Eric Yeh, and Mercia Zheng.

A special thanks goes to two Sun individuals, Bob Delaney and Ron Kleinman,
who provided valuable insight into the operating system’s feature set.

Steve Woodward, Bill Tracey, Mike Sullivan, Jonathan Wagner, Sheila Harnett,
Joe Tano, and Les Wilson were among the great IBM engineering contributors.

Above all, thanks to Maureen, Matthew, Evan, Rachel, and Erika and Max for
their encouragement and support.

XV



Introduction

Why a New OS?

JavaOS™ is a new commercial operating system (OS) developed by Sun Microsystems,
Inc., and IBM. A commercial operating system is perhaps the most complicated
piece of software anyone can endeavor to build and maintain.

Once deployed, a successful operating system takes on a life of its own.
Device drivers, tools, and applications are built to take advantage of the new OS.
In turn, the OS is bug-fixed and expanded to reward early software developers
with more functionality and, if all goes well, more performance and reliability.
Early pioneering users are asked to be patient as the system matures. Typically
any operating system does not mature until its third major release.

Today, companies such as IBM, Microsoft, Apple, and Sun Microsystems put
so much time, effort, and money into developing, enhancing, and maintaining an
OS that very few new operating systems are built any more. Simply put, in the
current market there must be a compelling reason to build a new commercial OS.

Yesterday’s Reason: A New Hardware Architecture

In the past, new commercial operating systems typically were created to take
advantage of the power of a new computer hardware architecture, or platform. As
you know, a computer’s architecture, consisting of the set of attributes that deter-
mine what software will run on the computer, is used as a blueprint to build the
computer.

New computer architectures were created when significantly greater function-
ality and performance become possible with a new family of “iron.” By far, the
most common reason to build a new computer-hardware architecture was to
deliver more memory-addressing capability, such as Digital Equipment Corpora-
tion’s introduction of the VAX architecture.

Computer-addressing capability is measured by the size, in bits, of an address.
A 32-bit address, for example, yields 4GB of addressable memory space, or
address space. A 32-bit address space enables a computer to run larger and more
complex applications than is possible with, say, a 16-bit address space.

xvii



xviii

INTRODUCTION

Today’s Reason: Java" Technology

In the 1970s, IBM and Digital Equipment Corporation helped to standardize the
business and scientific computing worlds. In the 1980s, Apple, IBM, and
Microsoft introduced standardized personal computing to the individual, and Sun
introduced the workstation.

The decade of the 1980s saw a tremendous consolidation of computing based
on this evolving set of common standards. These standards, because of their value
to the consumer, permeated to the deepest levels of the platform—the CPU and
devices.

The IBM PC architecture was defined in 1981; the turbo-charged PC of today
is a superset of that original architecture. The burden of supporting years of legacy
hardware and software products grows with each year that passes. Surprisingly,
while hardware has advanced by leaps and bounds, operating system technology
has progressed more slowly. Most operating systems today are still written largely
in C, C++, and assembly code. These software technologies place a practical limit
on what the OS can do.

The Java programming language opens new possibilities in OS design. A large
portion of the system software is entirely insulated from the underlying platform.
This enables a degree of standardization, centralization, and footprint customiza-
tion that was simply impractical with native code OSs. It also enables a more
secure and robust OS environment because of the Java programming language’s
inherent fail-safe features.

JavaOS for Business' represents the most advanced JavaOS implementation,
and many of the technologies described in this book were implemented first there.
Already, some JavaOS technologies have found there way into other environ-
ments. The JavaOS System Database and the portions of the device driver archi-
tecture are good examples of this, having found there way into point-of-sale
applications.

How This Book Is Organized

This book takes a high-level look at the JavaOS operating system but does not
cover specific programming interfaces in great detail. The JavaOS design is pre-
sented top-down, beginning at the highest level and progressing layer by layer
more deeply into the operating system. The reader is assumed to be familiar with
the Java programming language and with the Java Development Kit (JDK).

Chapter 1, Introduction, explores the evolution of JavaOS from a simple
stand-alone Java Virtual Machine (JVM) to a modern, microkernel-based
operating system.



INTRODUCTION Xix

Chapter 2,The Database, covers the JavaOS System Database (JSD) which
may be used to configure the operating system.

Chapter 3, Events, presents the JavaOS Event System which may be used to
support automatic plug-and-play devices.

Chapter 4, Service Loader, presents the JavaOS Service Loader (JSL) which
may be used to load operating system services such as device drivers.

Chapter 5, Standard Device Support, gives information on support for stan-
dard JDK devices, such as network and graphic devices.

Chapter 6, Device Drivers, gives an overview of the JavaOS Device Inter-
face (JDI) and JavaOS device driver architecture.

Chapter 7, Memory, presents the JavaOS memory model.
Chapter 8, Interrupts, covers the JavaOS interrupt model.
Chapter 9, The Microkernel, covers the JavaOS microkernel.

Chapter 10, Booting, presents the JavaOS boot architecture and the JavaOS
Boot Interface (JBI).



Preface

Acknowledgments

Introduction

1 Overview

1.1
1.2
1.3
1.4
1.5

1.6

Evolution of JavaOS

JavaOS and the JDK

Supported Computing Models
Code Composition

Major Components

1.5.1 Runtime Components
1.5.2 Non-Runtime Components
Summary

2 The Database

2.1
2.2

23

2.4
2.5

Current JDK Configuration Support
Configuration Support with the JSD
2.2.1 Population Methods

2.2.2 Client and Server Components
2.2.3 Three-Tier Computing Architecture
Entries in the Database

2.3.1 Entry Interface

2.3.2 Properties

2.3.3 Entry States

JSD Organization

Standard Namespaces

2.5.1 Temp Namespace

2.5.2 Device Namespace

2.5.3 Interface Namespace

Contents

Xxi

xvii

W = O O 00 O\ L — =

—

15

15
15
16
18
19
19
20
20
21
23
25
26
26
27



vi

2.6
2.7
2.8

29

2.5.4 Alias Namespace
2.5.5 Software Namespace
2.5.6 Config Namespace
Entry Format

Persistent Entries

Trees

2.8.1 Transaction Lock
2.8.2 Tree Population
2.8.3 Pathnames

Database Events

2.10 Database Navigation

2.10.1 Cursors
2.10.2 Searching the Database

2.11 Summary

3 The Event System

3.1
32
33

34

35
3.6

3.7
3.8
39

JDK Event Routing

JavaOS Event Routing

Event System Classes

3.3.1 Consumer Ordering Rules
3.3.2 Producer Classes
Registration

3.4.1 Producer Registration
3.4.2 Consumer Registration
3.4.3 Peer-to-Peer Registration
3.4.4 Event Matching Rules
Bidirectional Events

Types of Consumption

3.6.1 Shared Consumption
3.6.2 Exclusive Consumption
3.6.3 Competitive Consumption
Threading

Sample Device Driver Event
Summary

4 The Service Loader

4.1
4.2
43

Services
Business Cards
The JavaOS Configuration Tool

CONTENTS

29
30
30
34
35
36
37
37
40
41
42
44
44
44

47

47
49
50
51
51
52
52
53
33
54
55
55
56
56
56
56
57
59

61

62
62
64



CONTENTS

4.4
4.5
4.6
4.7
4.8

How the Service Loader Manages Services
Downloading Services

Connecting Clients and Services

Service Loader Architecture

Summary

5 Standard Device Support

5.1

5.2

53
54
5.5

Networking

5.1.1 Networking Architecture

5.1.2 Platform-Independent Networking
Video

5.2.1 Video Operation

5.2.2 Video Architecture

5.2.3 Alternative Video Designs

Mouse Support

Keyboard Support

Summary

6 Device Drivers

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8

6.9
6.10

Connecting Devices

Life Cycle of a Device Driver
Architecture of JavaOS Drivers
Matching Device Drivers with Bus Drivers
6.4.1 A Basic Device Driver
6.4.2 A Basic Bus Driver

The JavaOS Device Interface
Exceptions and Events

Device Handles

JDI Serial Port Device Example
6.8.1 Interfaces

6.8.2 Classes

6.8.3 Handles

Driver Packaging

Summary

7 Memory

Tl

Memory Basics
7.1.1 Addressing
7.1.2 JavaOS Address Spaces

66
67
67
69
71

73

73
74
75
76
77
77
79
80
83
87

89

90
91
91
95
96
97
98
99
100
102
102
104
106
107
108

109

110
110
112

vii



viii

7.2
7.3
7.4

1:5

7.1.3 Virtual Address Space Usage

7.1.4 Page Faults

7.1.5 Memory Ranges

Memory Access Models

The JavaOS Memory-Access Model

Memory Classes

7.4.1 Address Classes

7.4.2 Address Space Classes

7.4.3 Memory Region Classes

7.4.4 Memory Region Creation Using Addresses
from the JSD

Summary

8 Interrupts

8.1

8.2

8.3

8.4

Abstracting Interrupts

8.1.1 Interrupt Source Tree

8.1.2 Interrupt Source Entries

8.1.3 IST Construction

Interrupt Management

8.2.1 Registering Interrupt Code

8.2.2 Interrupt Handlers

8.2.3 Synchronizing Interrupt Handlers
8.2.4 Queuing a Deferred-Interrupt Handler
Interrupt Dispatching

8.3.1 Interrupt Dispatcher

8.3.2 Bus and Device Interrupt Handling Roles
Summary

9 The Microkernel

9.1

9.2

9.3

Microkernel Overview
9.1.1 Run All Software in Supervisor Mode
9.1.2 Run All Software in Single Virtual
Address Space
9.1.3 No Inter-Process Communication Is Necessary
Microkernel Architecture
9.2.1 Microkernel Interfaces
9.2.2 Microkernel Managers
Interrupt Manager Services
9.3.1 Interrupt-Level Execution Context

CONTENTS

112
113
113
116
116
118
118
120
121

125
126

127

127
128
129
131
132
133
134
137
138
139
139
140
141

143

143
144

144
144
145
145
146
148
149



CONTENTS

10

9.3.2 Interrupt Processing
9.3.3 Clients of the Interrupt Manager
9.4 Thread Manager Services
9.4.1 Initialization
9.4.2 Destruction
9.4.3 Scheduling
9.4.4 Information
9.4.5 Stack Management
9.4.6 Software Interrupt and Exception Management
9.4.7 Thread Manager Clients
9.5 Virtual Memory Manager Services
9.5.1 Page Management
9.5.2 Fine-Grained Memory Management
9.6 Monitor Manager Services
9.6.1 Managing Monitors
9.6.2 Entering a Monitor
9.6.3 Exiting a Monitor
9.6.4 Waiting Within a Monitor
9.6.5 Notifying Waiting Threads
9.7 File Manager Services
9.8 Library Manager Services
9.9 JVM Management Services
9.10 Start up and Shutdown Manager Services
9.11 Summary

Booting

10.1 The JavaOS Boot Interface
10.2 Starting JavaOS
10.3 Retrieving Platform Configuration Information
10.3.1 Calling Booter Functions
10.3.2 Physical Memory Map
10.3.3 Virtual Memory Map
10.3.4 File Augmentation
10.3.5 Platform Device Configuration
10.4 Device Discovery
10.5 Preboot Execution Environment Standard
10.6 Summary

Index

149
149
151
151
152
152
153
154
154
154
155
155
157
157
158
158
159
159
159
160
161
162
162
162

163

163
164
167
167
168
169
171
172
173
173
174

175

ix



Chapter 1

Overview

The JavaOS™ software is a new operating system (OS) optimized to run soft-
ware written in the Java" programming language on a variety of devices, from
embedded platforms to network computers. (We use the term “JavaOS” in place
of “JavaOS operating system” throughout this text.) As an alternative to hosting
the Java Development Kit (JDK) on a native OS, JavaOS provides a standalone
JDK hosting environment. More than two-thirds of JavaOS is written in the Java
programming language, with the remainder written in C and a small assembly lan-
guage component.

Because JavaOS is new, it provides a minimal implementation for hosting the
JDK. There is no extra code in the system for supporting legacy applications.
Because a large portion of the OS is software written in the Java programming
language (which we shall refer to as simply “Java software”), JavaOS is object-
oriented and portable. As you will learn later in this chapter, JavaOS may serve as
an “incubator,” gradually reducing the amount of native code necessary for host-
ing the JDK.

1.1 Evolution of JavaOS

JavaOS began its existence as a platform for embedded devices. James Gosling,
working for Sun Microsystems, created a small runtime environment and lan-
guage definition for enabling cross-platform programming on small, consumer
electronic devices. Gosling designed Java as an interpreted language running on a
virtual machine, a software central processing unit (CPU) with its own instruction
set. In essence, this virtual machine created an abstraction of the physical CPU
that programs could target in a device-independent way.



