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Management: Game Theory

Game theory is the branch of applied mathematics
concerned with the modelling of competition by rational
players. The seminal work in the field is considered to
be Theory of Games and Economic Behavior by von
Neumann and Morgenstern (1944), which lays out the
motivation and structure of the theory. Game theoryisa
modern discipline, in which new theory and applications
are developing. The reader interested in following its
progress is referred to the International Journal of Game
Theory, Econometrica and the Journal of Economic
Theory. Game theory is a mathematical discipline;
empirical observation and inference about conflict are
generally not admitted. It has had an influence on
applied and behavioral disciplines (economics, social
psychology, political science and anthropology), which
have adopted its modelling approach and the normative
conclusions available from simple models (Shubik
1982). This article describes the game-theory approach
to modelling and indicates applications along with some
results.

A game is a mathematical model of conflict, which
may have different representations (Luce and Raiffa
1957, Shubik 1982). There are three representations
(forms) that have risen to prominence in the literature:
extensive, normal (or strategic) and the characteristic-
function forms. The extensive form is the most detailed.
It consists of the following:

(a) players (including one called “chance” or “nature”
if there are chance or random moves in the game,

(b) a specification of rules of play of the game (order
of moves, choices available at each move),

(c) a specification of the information available to each
player at each move for that player,

(d) the payoff function (a specification of the value of
the game to each player for each set of strategy
choices for all the players).

The payoff function is defined using utility functions for
the players over outcomes of the game. Such utility
functions are shown to exist under axioms suggested by
von Neumann and Morgenstern, who demonstrated the
existence of utility functions that are unique up to
positive linear transformations and showed that the
utility of an uncertain situation is just the expected value
of the utilities of the events making up the situation.
Under these axioms interpersonal comparison of utility
by players (e.g., “this outcome is more valuable to me
than to you) has no meaning. Many game-theoretic
solutions are independent of interpersonal comparisons;
however, in many models of cooperative game theory

(see below) players’ utility functions are assumed linear
in money and the effect of interpersonal comparisons
are considered.

The extensive form is appropriate for study of the
sequential nature of play and is often represented by
the “game tree” generated by the sequential moves.
When every player knows all of the above elements (a—
d), we say that it is a game with complete information.
A game with complete information in which, at every
move, all previous moves by all players and by nature
are known is called a game with perfect information. In
this case, the player will know the exact sequence of
moves that got him to his current position. In a game
with imperfect information, the player will know that
some path in some subset of paths led him to his current
position, but will not know exactly which one since he
has imperfect knowledge of previous moves.

From the extensive form, one can construct the “strat-
egy set” available to each player. A single strategy for
a player will be a detailed and complete specification of
a choice for each move that the player might be called
upon to make for the entire game, conditioned on
information available at each move. The strategy set of
a player will be the collection of all such strategies. The
selection of a single strategy for each player will induce
the payoff associated with the play of the extensive-
form game under the selected strategies.

A game in normal form consists of the strategy sets
for the players and the payoff function, written as a
function of a vector of strategy choices, one for each
player. The normal-form representation is important
because it reduces any game to a game of a single stage
with the simultaneous choice of a strategy by all players;
the sequential or dynamic nature of play is factored out
in this representation. It is the most commonly used
form because of its representational economy; it is
simply a map from strategies to payoffs. Often, ex-
tensive- or normal-form games are described by the
number of players, as, for example, an n-person normal-
form game. A class of interest in normal- and extensive-
form games are zero-sum games: for all strategy choices
for the players the sum of payoffs to all players is a
constant. Often, players are allowed to choose strategies
which are themselves randomizations of strategies,
which are referred to as mixed strategies. If a game
allows players to coordinate their strategies, we refer to
the coordinated strategy as a correlated strategy, and
if it admits mixed strategies, as a mixed correlated
strategy.

The characteristic-function form assigns to each sub-
set of players, called coalitions, a set of payoffs to the
members of that coalition. The characteristic-function
form is used to study behavior in situations where coop-
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Management: Game Theory

eration between players is possible. If the utility of
payoffs to the players are transferable and linear in
money, the value of a coalition is a number cor-
responding to the maximum total utility of that
coalition, defined in one of two ways: the “a” or “B”
form. The value under the a form is the total utility
that the coalition can guarantee its members by using a
correlated strategy of members, no matter what strategy
the players outside the coalition adopt. The B form is
the total utility that the coalition cannot be prevented
from getting, no matter what the players outside the
coalition do. A similar definition of the forms can be
made in the case of nontransferable utility.

How the players behave and what a reasonable out-
come of the game is are specified by the solution
concept. Solution concepts are divided into two types:
cooperative and noncooperative. In noncooperative
games, binding agreements between players are not
possible and players recognize that any agreement to
coordinate play and share value cannot be enforced.
Players can agree to coordinate their strategies, but the
agreement will only stand if each player cannot strictly
improve its payoff by “double-crossing” its partners:
any agreement must be self-serving. The basis of non-
cooperative theory for both the extensive and the nor-
mal form is the Nash equilibrium, a combination of
strategy choices such that each player’s strategy is the
best response to the other players. Since the set of Nash
equilibria for a game may be composed of more than
one element, a host of refinements have arisen: subgame
perfectness and sequential, perfect, proper and per-
sistent equilibria. Each is based on intuitive ideas of
what properties a noncooperative equilibrium should
have.

Cooperative solution concepts allow binding agree-
ments between players. Solution concepts, defined for
the characteristic-function form can be divided into
two categories: equitable solutions and unobjectionable
solutions. For equitable solutions, axioms describing
properties of “fair” solutions characterize the Nash bar-
gaining solution, the Kalai-Smorodinsky solution and
the Shapley value. The nucleolus solution for games of
characteristic-function form with linearly transferable
utility is an equitable solution which assigns a payoff to
each player such that the minimum difference between
the imputed value and the characteristic-function value
for all coalitions is maximized. Unobjectionable solu-
tions, such as the core, the von Neumann-Morgenstern
solution set and the bargaining set, all describe feasible
payoff vectors to the players that no coalition can
“block” or find objection to in some sense.

An important, relatively recent development in game
theory is Harsanyi’s approach to games with incomplete
information (Myerson 1984). Suppose that for an ex-
tensive-form game the payoff functions of the players
are dependent upon some state variable whose value
is unknown. Each player independently and privately
observes signals that give information about the state
through conditional probability statements on states
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given signals. Harsanyi assumes that the prior distri-
bution on states and the conditional joint distribution
on players’ signals given states are known by all. The
game becomes one of complete but imperfect infor-
mation. Harsanyi defines the noncooperative solution
concept of a Bayesian equilibrium for a game with
incomplete information as the vector of strategies for
each player conditioned upon individual signals, such
that each player’s strategy choice (given his individual
signal) maximizes his expected utility (given the con-
ditional distribution of the others’ private signals and
therefore strategy choices).

1. Applications from Noncooperative Theory

Game theory has made a strong contribution to areas
of managerial interest in the field of economics, par-
ticularly in the areas of oligopolistic behavior and the
economics of decentralized organizations (Schotter and
Schwodiauer 1980).

1.1 Oligopolistic Competition

The economic theory of oligopolistic behavior studies
competition of the few and applies to all markets where
perfect competition cannot be assumed. Game theory’s
contribution to the existing literature has been the study
of the use of price, quantity, location, advertising, prod-
uct spectrum, product innovation, production capacity
and reputation as strategic variables in a variety of
models to explain competitive behavior. Recent work
has focused on issues of incomplete information in such
models and the solution of the models in repeated
situations, since rarely do firms play against each other
just once. The game-theory approach has yielded exact
solutions to abstract market models and has amassed a
body of positive results about the use of the above
variables in real markets.

1.2 Decentralization

Intrafirm decision making focusing on issues of coor-
dination and incentives has received considerable scru-
tiny by game theorists and economists (Jennergren
1980). There are a number of threads in this research,
most of which model the decentralized decision process
as that of an n-person normal-form game and seek
properties of decisions corresponding to the Nash equi-
librium. Marschak and Radner (1972) in their theory of
teams studied decision making when all agents hold the
same objective function but differing information about
the state of the system including others’ decisions, and
examine optimal information structures and decision
rules for such organizations. Groves and Loeb studied
the problem of group decision making, closely related
to the economic problem of allocating public goods,
with decision makers with differing individual utility
functions on some space of group alternatives one of
which must be selected (Green and Laffont 1979). Their
analysis addresses directly the problem of allocation of
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resources and other common decisions made by head-
quarters of multidivisional firms. Each agent is assumed
to have information about his own utility function, but
not about the others’. The agents will communicate
to a center (headquarters) that interprets the agents’
messages and decides on a group decision through some
mechanism. The class of incentive schemes (functions
specifying rewards to the players) that yields messages
that contain truthful revelation of utilities as a dominant
strategy (truth telling is the best response to any strategy
of opponents) of the induced game is characterized and
has been found to be unsatisfactory. In these schemes,
some agents can be individually worse off with the
decision than they were before. No mechanism can tax
the agents to pay for the selected alternative such that
the tax collected exactly equals the cost. The total
profit of all agents (the firm’s total profit) may not be
maximized, and the mechanism is manipulatable by
coalitions, that is, coalitions may not find truth telling
to be a dominant strategy.

A related literature concerns the allocation of
resources in hierarchical organizations, where the firm’s
total profit is the sum of divisional profit, the division
manager’s goal is to maximize his individual profit, and
divisions are interrelated only by resource constraints.
Under uncertainty about divisional profit functions, the
headquarters of such a firm wishes to decide how to
allocate a fixed quantity of resources to maximize total
profit. This is done through an interchange of infor-
mation about the marginal utility of resources to
divisions, who myopically respond to transfer prices
on resources with messages of demand quantities that
maximize divisional profit. Adjustment of transfer
prices continue as a function of quantity messages,
until total demand equals supply. Under very restrictive
conditions, convergence will occur. Although this
approach is not explicitly game-theoretic, we may view
the adjustment process as a multi-stage game, where
the payoff to the division is the division’s profit when
the process stops. Truthful revelation of demands are a
dominant strategy equilibrium of the game and yield,
in the final stage, the profit-maximizing allocation for
the entire firm.

Recent interest has been in decentralized decision
making under incomplete information when head-
quarters’ profit depends on information from divisions
and on decisions made locally by divisions. This is
known as the principal-agent problem. Researchers
have studied incentive schemes that maximize head-
quarter’s profit such that truthful relevation of infor-
mation by divisions and optimal divisional decisions are
a Bayesian equilibrium of the induced game (Myerson
1984). Such schemes ensure that the firm is maximizing
profit to the fullest possible extent, even though the
truthfulness of information sent cannot be verified (the
problem of “adverse selection’), nor can the local deci-
sions be monitored by headquarters (the problem of
“moral hazard”). In these models, the players’ differing
attitudes to risk are explicitly considered. Such models

have been used to analyze optimal employment con-
tracts and insurance policies where information from
applicants for a job (or insurance contract) cannot be
checked and the job holder’s performance (or insurance
holder’s behavior with the insured property) cannot
be perfectly monitored or the checking/monitoring is
prohibitively expensive.

1.3 Auctions and Bidding

A considerable literature has developed on auction
mechanisms, especially the English ascending oral auc-
tion (the usual oral auction), the first-price sealed bid
auction (the high bidder wins and pays its bid), the
Dutch auction (the auctioneer announces a sequence of
descending prices, the first bidder who responds wins
and pays the announced price) and the second-price
sealed bid auction (the high bidder wins and pays the
bid of the second highest bidder). Optimal bidding in
such markets has also been studied. A comprehensive
survey of current work and a bibliography are available
in Engelbrecht-Wiggans (1980). Two modelling
approaches predominate in the literature: decision
analysis, where a bidder is considered the only strategic
player, and the game-theory approach, where all bid-
ders are strategic. In studying bidding behavior, the first
approach stresses forecasting the distribution of bids
facing the bidder, with an optimal bid set on the basis
of expected utility, the second approach studies prop-
erties of the Bayesian equilibrium of the induced
game with incomplete information. The game-theory
approach has generated a raft of qualitative and quan-
titative conclusions about optimal bidding and the rev-
enue generating properties of auctions (Milgrom and
Weber 1982).

An important distinction has developed about the
bidders’ valuation of auctioned objects and its effect on
models: private values as distinguished from common
values. In the first case, each bidder’s estimate of value
is private and others’ valuations do not affect his. A
bidder is assumed to have an estimate of his own valu-
ation and has a probability distribution on the others’
valuations. This model would be appropriate for auc-
tioned ojbects where others’ feelings about the quality
of an object are unimportant, there is no quantity uncer-
tainty, and the object will be consumed or not brought
back to the market for resale for a long period. In the
common values model, a bidder’s estimate of value
is affected by the valuation of others. This model is
appropriate for bidding situations in which the object
auctioned will be resold, or where there is quantity or
quality uncertainty. An auction involving a house to be
bought for quick resale, or mineral recovery rights, or
a rare painting would be appropriate for the common
values model. The distinction between models is impor-
tant because, in the common values case, a firm’s strat-
egy in bidding imparts information to a competitor not
only about the bidders’ valuation but also the value of
the object to the competitor. The information content
of bids cannot be ignored. For example, typically in
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bidding for oil reserves, there is considerable uncer-
tainty in the quantity of oil recoverable. A firm that
bids and wins probably will have overestimated the size
of the recoverable reserve unless he has taken into
account what winning the bid says about the others’
estimates.

It has been demonstrated that for the private values
model, the English, first-price sealed bid, second-price
sealed bid and Dutch auctions will all deliver the same
expected revenue to the seller, in the absence of risk
aversion of the bidders. With risk aversion, the first-
price sealed bid and Dutch auctions will yield higher
expected revenues than the others. For the common
values model with risk neutrality of bidders; the English
auction generates higher expected revenues than the
second-price sealed bid, which is in turn superior to
the first-price sealed bid and the Dutch auction. The
problem of optimal auction design has yielded results
on alternate auction forms, not of the above types,
that maximize seller revenue in private values models.
Research has also been done on the effect that entry
fees and reserve prices have on expected revenues.

1.4 Games against Nature

Games involving one strategic player in situations with
uncertainty have been studied in statistical decision
theory for situations where the opponent is not a stra-
tegic player (for example, the stock market facing the
strategic investor) and where the opponent is an active
player but his motivations and actions are not modelled.
The two routes in analysis are

(a) decision theory: assume a probability distribution
for opponents actions, and act optimally against
that distribution;

(b) game theory: assume the conservative stance that
the opponent’s interests are strictly opposed to
yours and model the players’ decision problem as
a two-person zero-sum game, a model form well
studied and understood.

Applications of the game-theoretic approach have
included capital budgeting, sampling and investment in
securities options. Solution criteria for these types of
games have taken the form of either a “minimax” solu-
tion (the player plays the strategy that maximizes his
minimum winnings), which corresponds to the player’s
Nash equilibrium strategy of the game; Savage’s “mini-
max regret criterion” (the minimax strategy for the new
zero-sum game generated by defining the payoff for
each strategy pair to be the difference between the
player’s payoff and the best payoff possible for the
opponent’s strategy choice for the original game); or
Hurwicz’s “pessimism-optimism index criterion”
(where the player plays his minimax strategy against
a weighted combination of the best and worst pos-
sible outcomes). See Luce and Raiffa (1957) for a dis-
cussion.
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2. Applications from Cooperative Theory

2.1 Bargaining, Arbitration and Mediation

Game theory has attempted to cast light on the process
of bargaining between individuals by viewing the pro-
cess as a cooperative one where the players involved
must agree on an assignment of utility among
themselves. Outcomes of the bargaining process are in
terms of utility assignments, not in terms of strategy
choices. The criteria of this assignment have been
efficiency (there is no other assignment of utility to the
players through correlated strategies where all do at
least as well and at least one player is doing strictly
better) and equity (the fairness of the assignments,
considering the initial utility assignments of the players
and their power, as measured by their strategic possi-
bilities). Bargaining theory is an axiomatic theory; a set
of axioms are assumed and the properties of the solu-
tions obeying the axioms are characterized (Roth 1979).
One bargaining solution is distinguished from another
by the axioms of fairness underlying it. An alternative
interpretation of this process has been that a third party,
an arbitrator, must decide upon an assignment, based
upon axioms of efficiency and equity, which the players
are bound to obey. (Mediation is viewed as a third party
process to aid the bargainers, which is not binding.)
John Nash proposed one set of axioms that an equitable
bargaining procedure should have: symmetry, inde-
pendence of irrelevant alternatives, individual ration-
ality, efficiency and the requirement that the solution
be independent of positive linear transformations on
the player’s utility functions. With these axioms he
demonstrated the existence of a unique bargaining solu-
tion. Given an n-person normal-form game, the Nash
bargaining solution assigns a unique solution: the vector
(vy, vy, .. ., ,) of utility to the players that maximizes
the product (v, —u,) (v, —u,) ... (v, — u,) over the
set of utility n-tuples generated by the set of mixed
correlated  strategies of the players, where
(uy, uy,...,u,) are minimax levels for the players.
Other axiomatic bargaining solutions are based on the
work of Raiffa and of Kalai and Smorodinsky. What
happens in a bargaining situation when the players fail
to reach an agreement and the effect that this has on
the bargaining process have been modelled by Nash.
Unless the players can agree on a solution, they will
resort to a disagreement or “threat” strategy. Nash’s
variable threat solution assigns to each player the utility
of the n-person Nash equilibrium of the game generated
by the Nash bargaining solution with the (u,, u,, . . ., u,)
vector replaced by the payoff vector of the threats.
Thus, the bargainers seek an equilibrium in threats.
Nash’s solution assumes complete information about
the players’ strategies and payoffs. Harsanyi and Selten
(1972) and Myerson (1979) solve the problem of bar-
gaining under incomplete information by defining the
solution to be utility assignments that are uniquely
chosen from the convex hull of payoffs of the Bayesian
equilibria of a well-defined bargaining game. Another
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approach is that of bargaining when payoff functions of
others are unknown (Sobel 1981). If payoff functions
are individually reported to an arbitrator who applies
the Nash bargaining solution or the Kalai-Smorodinsky
solution, the players will play a game with payoff func-
tion reports as strategies. For the case of bargaining
over a single commodity, the Nash equilibrium of the
reporting game will have all players report linear, risk-
neutral payoff functions and this will be a dominant
strategy. The implication of this result is, when bargain-
ing, to represent your utility function as being risk-
neutral.

To date, the game-theory approach has not well inte-
grated the factors of history, psychology and insti-
tutional structure into the bargaining problem. Thus,
game-theoretic results can only serve as a guide, a
“standard,” for any specific bargaining situation. See
Walton and McKersie (1965) for a discussion of how
game-theoretic and extra-game-theoretic factors come
into play in a collective bargaining process.

2.2 Allocating Costs

Cooperative theory has been applied to the description
of various methods of cost allocation for intrafirm shar-
ing of the cost of a commonly used facility and for
societal sharing of the cost of government projects. The
solution concepts of the core, the Shapley value and the
nucleolus have been used for the allocation of intrafirm
costs and costs of air pollution regulation, internal tele-
phone billing rates, airport use, public utility pricing
and water resources development (Shubik 1982).

These solution concepts are defined for characteristic-
function games with linearly transferable utility, and
are defined, in the current case, for agents whose utilities
are just total profit. The characteristic-function value of
any coalition is its net increase in profit using the facility
and paying for it itself (assuming the net increases is
positive, otherwise the value is zero). The core is the
set of allocations for the players (each summing to the
value of the coalition of all players) such that each
coalition’s allocation is at least as great as its value.
Thus, each coalition’s net return is at least as great as
it can guarantee itself. A problem with the core is that
it may not exist, and if it does, it generally will not be
unique.

The Shapley value always exists and is unique. It is
defined as the net profit allocation such that each agent’s
allocation is exactly its expected marginal contribution
to a randomly selected coalition. The allocation given
by the Shapley value sums to the value of the coalition
of all players. Like the core, the Shapley value guaran-
tees that each player in the game enjoys at least as much
profit as if he were standing alone. A problem of the
Shapley value, however, is that the allocation generated
by it may not have the above property for a coalition.

An allocation scheme which always exists, is unique
and attempts to minimize coalition complaints to allo-
cations is the nucleolus. It has been pointed out that
this scheme is like a Rawlsian cost-share scheme, where

the payoff to the worst-off agent is maximized. A prob-
lem is that an individual agent or coalition may receive
an allocation less than it can guarantee itself.

2.3 Value of a Block of Shares

Another application of the Shapley value is to measure
the power of players in a voting game where a fixed
percentage of votes rules. This approach has been gen-
eralized to apply to the value of a block of shares in
corporate takeovers (Shubik 1982).

See also: Games with Infinitely Many Players; Games,
Noncooperative; Games, Repeated; Differential Games:
Introduction; Nash Equilibrium; Decision Analysis;
Human Judgment and Decision Rules
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Management: Hypothesis Testing

The two major areas of statistical inference are the
testing of hypotheses and the estimation of system states
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and parameters. The former area, hypothesis testing, is

the subject of this article. We will develop some aspects .

of classical decision theory, and describe simple appli-
cations to communication and control sciences.

There are many situations in which hypothesis testing
(often called detection theory in the communication
theory literature) is applicable. A radar return is
observed, and the presence or absence of a target is to be
determined; from a smear of human tissue we attempt to
determine whether a patient has cancer; from fluc-
tuations in activity of a particular stock on one of the
exchanges, we decide whether or not to buy some shares
of the stock.

In each case we use choose an answer yes or no, and
we refer to these two choices (yes or no) as hypotheses
9, and %€,. It is possible to have more than two hypoth-
eses and to attempt to decide which one of N hypotheses
to accept.

1. Purpose of Hypothesis Testing

In the analysis phase of the systems process, it is often
desirable to assess the validity of various assumptions
concerning systems operation. In any situation where
hypotheses or assumptions are used, there is the possi-
bility of accepting a false hypothesis or rejecting a true
hypothesis. These two situations are called Type I and
Type II errors. Figure 1 indicates Type I and Type II
errors for a hypothetical situation. In the absence of a

’7/0'-»0”,7('(0'-’(.)

"ZOZDII»)YO(‘]"’(O)
Type I error

False-alarm probabilit

Type II error

Zt
threshold

Accept #, Accept
Reject ¥, Reject g
Decision

Reality
Accept # Reject o
Correct TypeI error

Ho true decision (probability a)
Type II error Correct

H, false (probability 3) decision

Figure 1

Probability densities for illustration of Type I and
Type 1I errors. A single sample is made, and if the
result is less than z;, then %, is accepted; otherwise
¥, is accepted
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hypothesis testing method, the probability of a Type I or
Type II error is unknown. Hypothesis testing provides
measures that enable determination of whether too
much significance is attached to results which occur
through pure chance. It is not generally possible to
reduce the probability of a Type I or Type II error to
zero. However, either but not both of these probabilities
can be reduced to the extent that they are virtually
eliminated. This process is known as establishing a level
of significance.

Hypothesis testing is used when assumptions must be
evaluated, and where it is not possible to study the entire
“population” of values about which these assumptions
have been made. In its simplest form, two hypotheses
are defined: the null hypothesis %, and the alternate
hypothesis ¥,. Typically, the alternate hypothesis is
developed first. It usually concerns the positive aspect
of an issue and may come directly from the issue for-
mulation elements. For example, the alternate hypoth-
esis might be: “There has been a reduction in energy
use in London over the past twelve months.” It is
important to note that the basis of the hypothesis testing
method is the null hypothesis. Type I and Type II errors
are based on rejection of, or inability to reject, the null
hypothesis. In other words, the alternate hypothesis will
only be accepted if the null hypothesis is rejected. If the
null hypothesis cannot be rejected then no conclusion
is possible concerning the alternate hypothesis. The null
hypothesis and the alternate hypothesis must be selected
so that data supporting the alternate hypothesis is such
that it can potentially cause the null hypothesis to be
rejected. ¥, is designed so that it is more likely to be
true if #,, is rejected. The following statement would be
inappropriate as a null hypothesis to accompany the
previous 3,. “There has not been a reduction in energy
use in the UK over the past twelve months.” Results of a
sample taken to determine the validity of this hypothesis
would not provide meaningful information about ¥,.
An appropriate null hypothesis is the negative of the
alternate hypothesis. “There has not been a reduction
in energy use in London over the past twelve months”
is a good null hypothesis to use in conjunction with the
#, stated above.

Following the selection of the two hypotheses, speci-
fication of the level of significance is needed. The value
of this level is arbitrary, and is specified in accordance
with the decisionmaker’s desires. The level of sig-
nificance « is compared to a statistical analysis on the
results of an experiment performed on a random sample
of the population. This “population” is the same set of
values for all tests. Statistical analysis of the test results
yields the probability of finding the results of that test
if #, were actually true. If the statistical value is smaller
than the present level of significance, it is concluded
that ¥, should be rejected and ¥, accepted. If the
statistical value, or likelihood, is greater than « it is
concluded that the sample information does not provide
sufficient evidence to reject . The deviation from data
that support %, found in the sample could be due solely
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to random factors. It is desired to reduce this possibility.
Tests are generally designed to keep the possibility of
making Type I errors small. Since the null hypothesis
usually states what is believed to be true in the absence
of data, it is generally appropriate to structure the
problem such that supporting data will tend to cause
rejection of the null hypothesis and acceptance of the
alternate hypothesis. Often it is more costly to make a
Type I error than a Type II error of the same relative
amount, and if this is the case we try to avoid making
that type of error.

Selection of an appropriate test statistic is based on
the population being studied. Normal distributions, chi-
square, t or F distributions are typical choices and are
picked as a function of the degrees of freedom or
continuity of range in the possible outcomes. For
example, the possible outcomes of the roll of a pair of
dice has fewer degrees of freedom than the outcome of
selecting a colored jellybean from a jar of 2000 beans of
20 different colors. Proper selection of the distribution is
based on the statistical properties (mean, variance, etc.)
of the population. However, if these are not known,
sample results may be used to calculate these values.
This complicates the computation of error probabilities
considerably.

Design of the sample size is often a function of how
much freedom the analyst has to choose the sample
size. Statistical methods for computing the minimum
sample size are available. The sample size is based on
the minimum size necessary to guarantee that certain
constraints will be met. The parameter « is the prob-
ability that a Type I error will be made, and f the
probability that a Type II error will be made. Although
B cannot be calculated unless %, is an exact hypothesis,
it is known that, for a specified «, the parameter g will
decrease as the sample size increases. This means that
the possibility of properly rejecting a false hypothesis
increases as more information becomes available.

Extreme care must be taken to ensure that all samples
are taken in a truly random fashion. The validity of the
statistical outcome depends heavily on the randomness
of the sample, and this indicates the considerable
importance of randomness in the collection process.

Once the mean, variance and other relevant aspects
of the test have been calculated, the value “p” must be
calculated. Here p is the likelihood that a particular test
result, given that ¥, is true, is found in a random
sample. It also represents the fraction of times that the
test results achieved in the test can be expected among
a very large number of similar tests, given that %, is in
fact true. The analyst compares the value of p to the
preset a. If p is smaller than e, it is concluded that this
particular test result is so unlikely if %, is true that ¥,
must be rejected. If p is greater than « then it is
concluded that the deviation in the test result from %,
could be accounted for by random chance. There is, in
this case, not enough evidence to reject .

Hypothesis testing is useful in any situation where it
is desirable that hypotheses be accepted or rejected on

the basis of statistical information. It is not uncommon
that the issue formulation and analysis steps of the
systems process do not initially result in complete and
precise information about one or more aspects of system
operation. It is often useful to have a method to evaluate
assumptions about the system, rather than basing an
important decision merely on intuition. It is to these
ends that hypothesis testing is most useful. Hypothesis
testing can be valuable in the system implementation or
operation when an action depends on a judgement
about the actual state of a system, and where complete
information about system operation is not attainable.

2. Elementary Mathematics for Hypothesis
Testing

Each hypothesisin a given problem results from a source
which generates one of the hypotheses as an output.
Data to enable acceptance or rejection of the hypothesis
is not observed directly, or there would be no decision
problem. A probabilistic transition mechanism “sep-
arates” the hypothesis from our observations. This
device knows which hypothesis is true and generates a
point or points in observation space according to some
probability law. We have access to the observation
space, and form a decision on the basis of a decision
rule as to which hypothesis to accept. This decision is
based upon a knowledge of the a priori probability of the
various hypotheses and of the conditional probabilities
inherent in the probabilistic transition mechanism. If
the (a priori) probability that ¥, will occur is Py and
the probability of ¥, is Py , then Py, + P, =1, since
one of the hypotheses 7, or #, must be true. We make
a single observation z corrupted by noise (which may
have different statistical characteristics, depending upon
which hypothesis was true), and attempt to make a
decision from the hypotheses

#,:z=v,
#,:z=1+v,

Knowledge of the probabilistic transition mechanism is
equivalent to a knowledge of the probability density
functions associated with v,and v,. In much of the work
in systems and control v, and v, are called measurement
noise. Figure 2 illustrates the elements of the binary
hypothesis testing problem.

Two kinds of errors are possible in simple binary
decision problems, as we have stated. We may accept

obabilistic] | Observation Decision] Accert, Xo
Source ronsition space rule | >
mechanism 3' Accept X,
Hyor K,
Figure 2

Elements of elementary hypothesis testing problem
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3, when it is false, or we may accept #, when it is false.
In the radar problem, where %, corresponds to the
absence of a target and %, corresponds to the presence
of one, acceptance of ¥, when it is false is called a
“miss,” and the probability of doing this is called the
miss probability Py,. One minus the miss probability is
called the detection probability, P, = 1 — P,,. Accept-
ing %,, deciding that a target is present when , is false
and a target is not present is called a false alarm and
the associated probability is the false-alarm probability
Pe.

These ideas may be illustrated in a simple graphical
fashion. An alternative statement of the problem is that
under %, we have p_(«) = p.,(a|¥,), and under %, we
have p_(@) = p,j5(a|%,). Thus the object of the hypoth-
esis testing problem is to accept one of the two density
functions p,jy, Or P, @S being “most representative” of
the density of a given population. These densities may
appear as illustrated in Fig. 1. Assume a threshold at
« = zr, so that if a single observation z = a, is greater
than z;, we accept #, and if it is less than z, we accept
%,. In a more realistic situation the parameter « is
defined as a sufficient statistic, and may be made up of
several observations rather than obtained from a single
observation. Here, we find it convenient to consider «
as a scalar observation.

We determine false-alarm and miss probabilities for
a simple single observation case. From Fig. 1 and the
foregoing reasoning the miss probability is

Py = f ' paelali) da M

while the false-alarm probability becomes
Py = f Pu(|¥,) dor )
T

The miss probability may be made as small as desired at
the expense of the false-alarm probability. In a practical

situation one of the probabilities, such as Py, may be -
fixed, and a test is selected. This might be the threshold .

zr selected, so that Py is minimized. This criterion,
known as a Neyman-Pearson criterion, is trivial in this
particular situation, since fixing the false-alarm prob-
ability fixes the threshold, and hence the miss
probability. In a more realistic situation there would be
more than one observation, and thus ample opportunity
to constrain the false-alarm probability by using
Lagrange multipliers without simultaneously fixing the
miss probability. Hence, we would obtain a minimum
of

Inp = Py + A[Pr — ] (3)

where A is a Lagrange multiplier, and y is the desired
false-alarm probability. We set the derivative of Jy, with
respect to zy equal to zero to obtain, by using Eqns. (1)
and (2) such that we have a likelihood-ratio test for an

2014

observation z = a,
PZ|3¢(C¥|%1) aceept 3,
—a =
pzl?((a'|%0) accept #g

(4)

which says that we accept %, if the ratio is greater than
A and accept %, if the ratio is less than A when evaluated
at z = . We adjust the variable A, the Lagrange mul-
tiplier, so that Pp = 4.

If a false alarm is as serious as a miss, an appropriate
criterion might be to minimize the miss probability plus
false-alarm probability. Thus we minimize

L)

Peow =Py + Pg =j P:laf(a”’%!)da’

+f Pae(al¥y) da (5)

21

by a proper choice of z;. We take the derivative of the
foregoing expression with respect to z; and set it equal
to zero to obtain the threshold as the value for which
the two densities are equal. If z = a, then p, ;3 > p.j5 |

v v 0
and we accept hypothesis 7€,. In this case we have a
likelihood-ratio test such that, since A is in effect equal
to 1,

accept #
P % (a/l%l ) = !

P (%) accept g : ©
Hypothesis testing problems are generally much more
complex than the simple scalar observation problem
presented here. Often it is unrealistic to assume that
false alarms and misses are equally serious. There may
be different costs associated with these errors, and there
may be costs associated with correct decisions. The
Bayes test, or Bayes risk criterion, is used to treat
problems of this type. We briefly examine this criterion
here.

The four courses of action in testing hypotheses
against single alternatives and their associated costs are

Cyo: cost of accepting 3, when %, is true
C,,: cost of accepting #, when ¥, is true
C,,: cost of accepting ¥, when ¥, is true
C,,: cost of accepting #, when %, is true

Cy and C,, represent costs associated with correct deci-
sions, whereas C;, and C,, represent costs associated
with incorrect decisions.

It is not unrealistic to associate “costs” with correct
decisions. In an application of decision theory to invest-
ment, for example, the cost associated with not buying
a stock, when the correct decision is not to buy a stock,
is that the money which could be invested in the market
for potentially large returns is not being invested, or is
being invested at much lower rates of return. In a similar
way, there is “cost” associated with purchasing a certain
stock when the correct decision should be to buy that
stock, since the money invested is now “risk capital,”



